Showing 20 articles starting at article 1021
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Space, Physics: Optics
Published Let there be (controlled) light


In the very near future, quantum computers are expected to revolutionize the way we compute, with new approaches to database searches, AI systems, simulations and more. But to achieve such novel quantum technology applications, photonic integrated circuits which can effectively control photonic quantum states -- the so-called qubits -- are needed. Physicists have made a breakthrough in this effort: for the first time, they demonstrated the controlled creation of single-photon emitters in silicon at the nanoscale.
Published 'Forbidden' planet orbiting small star challenges gas giant formation theories


Astronomers have discovered an unusual planetary system in which a large gas giant planet orbits a small red dwarf star called TOI-5205. Their findings challenge long-held ideas about planet formation.
Published Artificial intelligence conjures proteins that speed up chemical reactions


Scientists have used machine learning to create brand-new enzymes, which are proteins that accelerate chemical reactions. This is an important step in the field of protein design as new enzymes could have many uses across medicine and industrial manufacturing. The research team devised deep-learning, artificial intelligence algorithms that created light-emitting enzymes called luciferases. Laboratory testing confirmed that the new enzymes can recognize specific chemicals and emit light very efficiently.
Published Meteorite crater discovered in French winery


Countless meteorites have struck Earth in the past and shaped the history of our planet. It is assumed, for example, that meteorites brought with them a large part of its water. The extinction of the dinosaurs might also have been triggered by the impact of a very large meteorite. It turns out that the marketing 'gag' of the 'Domaine du Météore' winery is acutally a real impact crater. Meteorite craters which are still visible today are rare because most traces of the celestial bodies have long since disappeared again.
Published James Webb spots super old, massive galaxies that shouldn't exist


A team of international researchers have identified six candidate galaxies that existed roughly 500 to 700 million years after the Big Bang and are about as big as the modern Milky Way Galaxy -- a feat that scientists didn't think was possible.
Published Researchers uncover how photosynthetic organisms regulate and synthesize ATP


The redox regulation mechanism responsible for efficient production of ATP under varying light conditions in photosynthetic organisms has now been unveiled. Researchers investigated the enzyme responsible for this mechanism and uncovered how the amino acid sequences present in the enzyme regulate ATP production. Their findings provide valuable insights into the process of photosynthesis and the ability to adapt to changing metabolic conditions.
Published Better tools needed to determine ancient life on Mars


Current state-of-the-art instrumentation being sent to Mars to collect and analyze evidence of life might not be sensitive enough to make accurate assessments, according to new research.
Published Researchers discover mysterious source of 'heartbeat-like' radio bursts in a solar fare


A solar radio burst with a signal pattern, akin to that of a heartbeat, has been pinpointed in the Sun's atmosphere, according to a new study. An international team of researchers has reported uncovering the source location of a radio signal coming from within a C-class solar flare more than 5,000 kilometers above the Sun's surface.
Published Physicists create new model of ringing black holes



A new analysis has modeled black hole collisions in more detail and revealed so-called nonlinear effects within gravitational waves. Nonlinear effects happen 'when waves on the beach crest and crash.'
Published Nanoparticles self-assemble to harvest solar energy


Researchers design a solar harvester with enhanced energy conversion capabilities. The device employs a quasiperiodic nanoscale pattern, meaning most of it is an alternating and consistent pattern, while the remaining portion contains random defects that do not affect its performance. The fabrication process makes use of self-assembling nanoparticles, which form an organized material structure based on their interactions with nearby particles without any external instructions. Thermal energy harvested by the device can be transformed to electricity using thermoelectric materials.
Published The switch made from a single molecule


Researchers have demonstrated a switch, analogous to a transistor, made from a single molecule called fullerene. By using a carefully tuned laser pulse, the researchers are able to use fullerene to switch the path of an incoming electron in a predictable way. This switching process can be three to six orders of magnitude faster than switches in microchips, depending on the laser pulses used. Fullerene switches in a network could produce a computer beyond what is possible with electronic transistors, and they could also lead to unprecedented levels of resolution in microscopic imaging devices.
Published Enhanced arsenic detection in water, food, soil


Scientists fabricate sensitive nanostructured silver surfaces to detect arsenic, even at very low concentrations. The sensors make use of surface-enhanced Raman spectroscopy: As a molecule containing arsenic adheres to the surface, it's hit with a laser and the arsenic compound scatters the laser light, creating an identifiable signature. The technique is a departure from existing methods, which are time-consuming, expensive, and not ideally suited to on-site field assays.
Published Newly discovered form of salty ice could exist on surface of extraterrestrial moons



An international team has found two new crystal structures for salty ice, or solid hydrate made from water and sodium chloride. The newly discovered material's properties match those of the substance seen on the surface of icy moons, like Europa and Ganymede, and may offer clues to their icy oceans.
Published Electronic metadevices break barriers to ultra-fast communications


EPFL researchers have come up with a new approach to electronics that involves engineering metastructures at the sub-wavelength scale. It could launch the next generation of ultra-fast devices for exchanging massive amounts of data, with applications in 6G communications and beyond.
Published Tadpole playing around black hole



A peculiar cloud of gas, nicknamed the Tadpole due to its shape, appears to be revolving around a space devoid of any bright objects. This suggests that the Tadpole is orbiting a dark object, most likely a black hole 100,000 times more massive than the Sun. Future observations will help determine what is responsible for the shape and motion of the Tadpole.
Published Does ice in the Universe contain the molecules making up the building blocks of life in planetary systems?



If you want to build a habitable planet, ice is a key ingredient. The ice can be found in enormous clouds in the Universe and it is the main carrier of the necessary elements such as carbon, hydrogen, oxygen, nitrogen and sulphur. These elements are part of the atmosphere around planets and part of molecules like sugar, alcohols and simple amino acids as well. The new James Webb Space Telescope (JWST) has contributed to the discovery of different ices in a molecular cloud, 'Chameleon 1' -- one of the coldest and darkest regions to have ever been explored. Astronomers assume that these types of molecules were also present in the cold cloud of gas and dust forming our own solar system.
Published Study quantifies global impact of electricity in dust storms on Mars


Mars is infamous for its intense dust storms, some of which kick up enough dust to be seen by telescopes on Earth. When dust particles rub against each other, as they do in Martian dust storms, they can become electrified. New research shows that one particularly efficient way to move chlorine from the ground to the air on Mars is by way of reactions set off by electrical discharge generated in dust activities.
Published Perovskites, a 'dirt cheap' alternative to silicon, just got a lot more efficient


Researchers typically synthesize perovskites in a wet lab, and then apply the material as a film on a glass substrate and explore various applications. A team has instead proposes a novel, physics-based approach, using a substrate of either a layer of metal or alternating layers of metal and dielectric material -- rather than glass.
Published Engineers discover a new way to control atomic nuclei as 'qubits'


Researchers propose a new approach to making qubits, the basic units in quantum computing, and controlling them to read and write data. The method is based on measuring and controlling the spins of atomic nuclei, using beams of light from two lasers of slightly different colors.
Published When the light is neither 'on' nor 'off' in the nanoworld


Scientists detect the quantum properties of collective optical-electronic oscillations on the nanoscale. The results could contribute to the development of novel computer chips.