Showing 20 articles starting at article 941
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Space, Physics: Optics
Published Toward tunable molecular switches from organic compounds



Newly synthesized organic molecules can be tuned to emit different colors depending on their molecular structures in crystal form.
Published NASA's Webb scores another ringed world with new image of Uranus



Following in the footsteps of the Neptune image released in 2022, NASA's James Webb Space Telescope has taken a stunning image of the solar system's other ice giant, the planet Uranus. The new image features dramatic rings as well as bright features in the planet's atmosphere. The Webb data demonstrates the observatory's unprecedented sensitivity for the faintest dusty rings, which have only ever been imaged by two other facilities: the Voyager 2 spacecraft as it flew past the planet in 1986, and the Keck Observatory with advanced adaptive optics.
Published Technology advance paves way to more realistic 3D holograms for virtual reality and more



Researchers have developed a new way to create dynamic ultrahigh-density 3D holographic projections. They now describe their new approach, called three-dimensional scattering-assisted dynamic holography (3D-SDH). They show that it can achieve a depth resolution more than three orders of magnitude greater than state-of-the-art methods for multiplane holographic projection.
Published Hubble sees possible runaway black hole creating a trail of stars



There's an invisible monster on the loose, barreling through intergalactic space so fast that if it were in our solar system, it could travel from Earth to the Moon in 14 minutes. This supermassive black hole, weighing as much as 20 million Suns, has left behind a never-before-seen 200,000-light-year-long 'contrail' of newborn stars, twice the diameter of our Milky Way galaxy. It's likely the result of a rare, bizarre game of galactic billiards among three massive black holes.
Published Twinkling stars fuel interstellar dust



Of the many different kinds of stars, asymptotic giant branch (AGB) stars, usually slightly larger and older than our own sun, are known producers of interstellar dust. Dusty AGBs are particularly prominent producers of dust, and the light they shine happens to vary widely. For the first time, a long-period survey has found the variable intensity of dusty AGBs coincides with variations in the amount of dust these stars produce. As this dust can lead to the creation of planets, its study can shed light on our own origins.
Published A new type of photonic time crystal gives light a boost



Researchers have developed a way to create photonic time crystals and shown that these bizarre, artificial materials amplify the light that shines on them. These findings could lead to more efficient and robust wireless communications and significantly improved lasers.
Published Hubble unexpectedly finds double quasar in distant universe



The early universe was a rambunctious place where galaxies often bumped into each other and even merged together. Using NASA's Hubble Space Telescope and other space and ground-based observatories, astronomers investigating these developments have made an unexpected and rare discovery: a pair of gravitationally bound quasars, both blazing away inside two merging galaxies. They existed when the universe was just 3 billion years old.
Published Looking at magnets in the right light



Unlocking the secrets of magnetic materials requires the right illumination. Magnetic x-ray circular dichroism makes it possible to decode magnetic order in nanostructures and to assign it to different layers or chemical elements. Researchers have succeeded in implementing this unique measurement technique in the soft-x-ray range in a laser laboratory. With this development, many technologically relevant questions can now be investigated outside of scientific large-scale facilities for the first time.
Published How were amino acids, one of the key building blocks of life, formed before the origin of life on Earth?



The amino acid abundances of two Ryugu particles were measured and compared with their rocky components. The results demonstrate the important role that water plays in the formation of amino acids on the giant precursors of asteroids like Ryugu. Our solar system formed from a molecular cloud, which was composed of gas and dust that was emitted into the interstellar medium (ISM), a vast space between stars. On collapse of the molecular cloud, the early sun was formed, with a large disk of gas and dust orbiting it. The dusty material collided to produce rocky material that would eventually grow in size to give large bodies called planetesimals.
Published A new measurement could change our understanding of the Universe


When it comes to measuring how fast the Universe is expanding, the result depends on which side of the Universe you start from. A recent study has calibrated the best cosmic yardsticks to unprecedented accuracy, shedding new light on what's known as the Hubble tension.
Published Researchers devise new membrane mirrors for large space-based telescopes



Researchers have developed a new way to produce and shape large, high-quality mirrors that are much thinner than the primary mirrors previously used for telescopes deployed in space. The resulting mirrors are flexible enough to be rolled up and stored compactly inside a launch vehicle and then reshaped after deployment.
Published Galaxy clusters yield new evidence for standard model of cosmology



A new study probing the structure and evolution of galaxy clusters shows good agreement with the predictions of standard cosmological models.
Published Scallop eyes as inspiration for new microscope objectives



Neuroscientists have developed innovative objectives for light microscopy by using mirrors to produce images. Their design finds correspondence in mirror telescopes used in astronomy on the one hand and the eyes of scallops on the other. The new objectives enable high-resolution imaging of tissues and organs in a much wider variety of immersion media than with conventional microscope lenses.
Published Scientists observe flattest explosion ever seen in space



Astronomers have observed an explosion 180 million light years away which challenges our current understanding of explosions in space, that appeared much flatter than ever thought possible.
Published Astronomers witness the birth of a very distant cluster of galaxies from the early Universe



Astronomers have discovered a large reservoir of hot gas in the still-forming galaxy cluster around the Spiderweb galaxy -- the most distant detection of such hot gas yet. Galaxy clusters are some of the largest objects known in the Universe and this result further reveals just how early these structures begin to form.
Published Brightest gamma-ray burst ever observed reveals new mysteries of cosmic explosions


Scientists believe the gamma-ray emission, which lasted over 300 seconds, is the birth cry of a black hole, formed as the core of a massive and rapidly spinning star collapses under its own weight.
Published Redness of Neptunian asteroids sheds light on early Solar System


Asteroids sharing their orbits with the planet Neptune have been observed to exist in a broad spectrum of red color, implying the existence of two populations of asteroids in the region, according to a new study by an international team of researchers.
Published Nanophysics: The right twist


Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.
Published Temperature of a rocky exoplanet measured


An international team of researchers has used NASA's James Webb Space Telescope to measure the temperature of the rocky exoplanet TRAPPIST-1 b. The measurement is based on the planet's thermal emission: heat energy given off in the form of infrared light detected by Webb's Mid-Infrared Instrument (MIRI). The result indicates that the planet's dayside has a temperature of about 500 kelvins (roughly 450 degrees Fahrenheit) and suggests that it has no significant atmosphere.
Published What do the elements sound like?


In chemistry, we have He, Fe and Ca -- but what about do, re and mi? Using a technique called data sonification, a recent college graduate has converted the visible light given off by each of the elements into soundwaves. The notes produced for each element are unique, complex mixtures and are the first step toward an interactive, musical periodic table.