Showing 20 articles starting at article 321

< Previous 20 articles        Next 20 articles >

Categories: Offbeat: Computers and Math, Physics: Optics

Return to the site home page

Chemistry: Biochemistry Engineering: Nanotechnology Physics: Optics
Published

Water droplet spun by sound screens for colon cancer      (via sciencedaily.com)     Original source 

Mechanical engineers have devised a diagnostic platform that uses sound waves to spin an individual drop of water up to 6000 revolutions per minute. These speeds separate tiny biological particles within samples placed in a very light disc sitting on top of the spinning drop. The technique could allow new point-of-care applications ranging from precision bioassays to cancer diagnosis. The technique requires less time and sample volume while inflicting less damage to delicate exosomes.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: Optics
Published

New high-speed microscale 3D printing technique      (via sciencedaily.com)     Original source 

A new process for microscale 3D printing creates particles of nearly any shape for applications in medicine, manufacturing, research and more -- at the pace of up to 1 million particles a day.

Chemistry: Biochemistry Computer Science: General Offbeat: Computers and Math Offbeat: General
Published

New AI technology enables 3D capture and editing of real-life objects      (via sciencedaily.com)     Original source 

Imagine performing a sweep around an object with your smartphone and getting a realistic, fully editable 3D model that you can view from any angle -- this is fast becoming reality, thanks to advances in AI. Researchers have unveiled new AI technology for doing exactly this. Soon, rather than merely taking 2D photos, everyday consumers will be able to take 3D captures of real-life objects and edit their shapes and appearance as they wish, just as easily as they would with regular 2D photos today.

Chemistry: Inorganic Chemistry Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

You don't need glue to hold these materials together -- just electricity      (via sciencedaily.com)     Original source 

Is there a way to stick hard and soft materials together without any tape, glue or epoxy? A new study shows that applying a small voltage to certain objects forms chemical bonds that securely link the objects together. Reversing the direction of electron flow easily separates the two materials. This electro-adhesion effect could help create biohybrid robots, improve biomedical implants and enable new battery technologies.

Computer Science: Encryption Computer Science: Quantum Computers Mathematics: General Mathematics: Puzzles Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Exploration Space: General
Published

Satellites for quantum communications      (via sciencedaily.com)     Original source 

Through steady advances in the development of quantum computers and their ever-improving performance, it will be possible in the future to crack our current encryption processes. To address this challenge, researchers are developing encryption methods that will apply physical laws to prevent the interception of messages. To safeguard communications over long distances, the QUICK space mission will deploy satellites.

Chemistry: General Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

New high-performance solar cell material      (via sciencedaily.com)     Original source 

A new study reports the discovery of an entirely new stable, earth-abundant, high-performance material for solar absorbers -- the central part of a solar cell that turns light into electricity. While identifying new solar materials is typically very time-consuming, the researchers used a unique high-throughput computational screening method to quickly evaluate around 40,000 candidate materials.

Engineering: Nanotechnology Physics: Optics
Published

Have metalenses expanded their reach into the ultraviolet region?      (via sciencedaily.com)     Original source 

A team achieves successful mass production of metalenses designed for application in the ultraviolet region.

Physics: Optics
Published

New traffic signal would improve travel time for both pedestrians and vehicles      (via sciencedaily.com)     Original source 

Adding a fourth light to traffic signals -- in addition to red, green and yellow -- would shorten wait times at street corners for pedestrians, as well as improve traffic flow for both autonomous vehicles and human drivers. And the more autonomous vehicles there are in the traffic network, the shorter the wait times for everyone.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Powerful new tool ushers in new era of quantum materials research      (via sciencedaily.com)     Original source 

Research in quantum materials is paving the way for groundbreaking discoveries and is poised to drive technological advancements that will redefine the landscapes of industries like mining, energy, transportation, and medtech. A technique called time- and angle-resolved photoemission spectroscopy (TR-ARPES) has emerged as a powerful tool, allowing researchers to explore the equilibrium and dynamical properties of quantum materials via light-matter interaction.

Biology: Zoology Chemistry: General Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

Cicadas' unique urination unlocks new understanding of fluid dynamics      (via sciencedaily.com)     Original source 

While most small insects and mammals urinate in droplets, cicadas urinate in jets. Researchers say the finding could be used to create better robots and small nozzles.

Chemistry: Biochemistry Physics: Optics
Published

Flexible artificial intelligence optoelectronic sensors towards health monitoring      (via sciencedaily.com)     Original source 

Artificial intelligence (AI) is known for its high energy consumption, especially in data-intensive tasks like health monitoring. To address this, researchers have developed a flexible paper-based sensor composed of nanocellulose and zinc oxide (ZnO) nanoparticles that operates like the human eyes and brain. The sensor is energy-efficient, responds to optical input in real-time, and is both flexible and easy to dispose of, making it ideal for health monitoring applications.

Physics: Optics
Published

Wearable tech captures real-time hemodynamics on the go      (via sciencedaily.com)     Original source 

Researchers have developed a photoacoustic imaging watch for high-resolution imaging of blood vessels in the skin. The wearable device could offer a non-invasive way to monitor hemodynamic indicators such as heart rate, blood pressure and oxygen saturation that can indicate how well a person's heart is working.

Offbeat: Computers and Math Offbeat: General
Published

AI-generated food images look tastier than real ones      (via sciencedaily.com)     Original source 

Researchers have announced an intriguing discovery -- consumers generally prefer AI-generated images of food over real food images, especially when they are unaware of their true nature.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Combined microscopy technique catches light-driven polymers in the act      (via sciencedaily.com)     Original source 

Researchers have used tip-scan high-speed atomic force microscopy combined with an optical microscope to observe light-induced deformation of azo-polymer films. The process could be followed in real time, and the film patterns were found to change with the polarization of the light source. The observations will contribute to the use of azo-polymers in applications such as optical data storage, and the approach is expected to be useful across materials science and physical chemistry.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Physics: Optics
Published

Tiny wireless light bulbs for biomedical applications      (via sciencedaily.com)     Original source 

The combination of OLEDs and acoustic antennas creates a light source that could be used for minimally invasive treatment methods.

Physics: Optics
Published

Powerless mechanoluminescent touchscreen underwater      (via sciencedaily.com)     Original source 

Scientists have developed an optical display based on mechano-optical mechanisms.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Making quantum bits fly      (via sciencedaily.com)     Original source 

Physicists are developing a method that could enable the stable exchange of information in quantum computers. In the leading role: photons that make quantum bits 'fly'.

Physics: Optics
Published

Compact chips advance precision timing for communications, navigation and other applications      (via sciencedaily.com)     Original source 

Precision timing and synchronization are crucial for navigation, communication and radar systems. Scientists have built compact chips capable of converting light into microwaves, which could improve these systems. This technology shrinks a tabletop system into a chip-sized format, reducing power usage and making it more applicable for use in everyday devices.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: Optics
Published

Aluminum nanoparticles make tunable green catalysts      (via sciencedaily.com)     Original source 

A nanotechnology pioneer has uncovered a transformative approach to harnessing the catalytic power of aluminum nanoparticles by annealing them in various gas atmospheres at high temperatures.