Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Computers and Math, Physics: Optics
Published Chance twists ordered carbon nanotubes into 'tornado films'



Scientists have developed two new methods to create ordered carbon nanotube films with either a left- or right-handed chiral pattern.
Published Conjoined 'racetracks' make new optical device possible



Kerry Vahala and collaborators from UC Santa Barbara have found a unique solution to an optics problem.
Published Immersive VR goggles for mice unlock new potential for brain science



New miniature virtual reality (VR) goggles provide more immersive experiences for mice living in laboratory settings. By more faithfully simulating natural environments, the researchers can more accurately and precisely study the neural circuitry that underlies behavior. Compared to current state-of-the-art systems, which simply surround mice with computer or projection screens, the new goggles provide a leap in advancement.
Published World's first logical quantum processor



A team has realized a key milestone in the quest for stable, scalable quantum computing. For the first time, the team has created a programmable, logical quantum processor, capable of encoding up to 48 logical qubits, and executing hundreds of logical gate operations. Their system is the first demonstration of large-scale algorithm execution on an error-corrected quantum computer, heralding the advent of early fault-tolerant, or reliably uninterrupted, quantum computation.
Published Hybrid device significantly improves existing, ubiquitous laser technology



Researchers have developed a chip-scale laser source that enhances the performance of semiconductor lasers while enabling the generation of shorter wavelengths. This pioneering work represents a significant advance in the field of photonics, with implications for telecommunications, metrology, and other high-precision applications.
Published First observation of structures resulting from 3D domain swapping in antibody light chains



Antibodies hold promise as therapeutic agents. However, their tendency to aggregate poses significant challenges to drug development. In a groundbreaking study, researchers now provide novel insights into the structure formed due to 3D domain swapping of the antibody light chain, the part of the antibody contributing to antigen binding. Their findings are expected to lead to improvements in antibody quality and the development of novel drugs.
Published ChatGPT often won't defend its answers -- even when it is right



ChatGPT may do an impressive job at correctly answering complex questions, but a new study suggests it may be absurdly easy to convince the AI chatbot that it's in the wrong.
Published Training algorithm breaks barriers to deep physical neural networks



Researchers have developed an algorithm to train an analog neural network just as accurately as a digital one, enabling the development of more efficient alternatives to power-hungry deep learning hardware.
Published Magnetization by laser pulse



To magnetize an iron nail, one simply has to stroke its surface several times with a bar magnet. Yet, there is a much more unusual method: A team has discovered some time ago that a certain iron alloy can be magnetized with ultrashort laser pulses.
Published Polaritons open up a new lane on the semiconductor highway



On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'
Published Soundwaves harden 3D-printed treatments in deep tissues



Engineers have developed a bio-compatible ink that solidifies into different 3D shapes and structures by absorbing ultrasound waves. Because the material responds to sound waves rather than light, the ink can be used in deep tissues for biomedical purposes ranging from bone healing to heart valve repair.
Published Bowtie resonators that build themselves bridge the gap between nanoscopic and macroscopic



Two nanotechnology approaches converge by employing a new generation of fabrication technology. It combines the scalability of semiconductor technology with the atomic dimensions enabled by self-assembly.
Published Chemists create organic molecules in a rainbow of colors



Chemists have now come up with a way to make molecules known as acenes more stable, allowing them to synthesize acenes of varying lengths. Using their new approach, they were able to build molecules that emit red, orange, yellow, green, or blue light, which could make acenes easier to deploy in a variety of applications.
Published Artificial intelligence makes gripping more intuitive



Artificial hands can be operated via app or with sensors placed in the muscles of the forearm. New research shows: a better understanding of muscle activity patterns in the forearm supports a more intuitive and natural control of artificial limbs. This requires a network of 128 sensors and artificial intelligence based techniques.
Published Breakthrough in photoactivatable nanomedicine for the treatment of age-related macular degeneration



Researchers have developed a light-activatable prodrug nanomedicine for age-related macular degeneration (AMD) therapy. Through the intravenous injection of the nanomedicine and application of light irradiation to diseased eyes, anti-angiogenic and photodynamic combination therapy can be activated, offering a minimally invasive alternative for the treatment of AMD and other ocular disorders characterized by abnormal blood vessel growth.
Published Laser additive manufacturing: Listening for defects as they happen



Researchers have resolved a long-standing debate surrounding laser additive manufacturing processes with a pioneering approach to defect detection.
Published A farsighted approach to tackle nearsightedness



As humans age, our eyes adjust based on how we use them, growing or shortening to focus where needed, and we now know that blurred input to the eye while the eye is growing causes myopia. It is so specific that the eye grows exactly to compensate for the amount and the direction of blur. Researchers have built a high-frequency ultrasonography system to measure eye size and how quickly eyes grow to better understand myopia and its contributing factors.
Published Optical data storage breakthrough



Physicists have developed a technique with the potential to enhance optical data storage capacity in diamonds. This is possible by multiplexing the storage in the spectral domain.
Published Tiny electromagnets made of ultra-thin carbon



Graphene, that is extremely thin carbon, is considered a true miracle material. An international research team has now added another facet to its diverse properties with new experiments: Experts fired short terahertz pulses at micrometer-sized discs of graphene, which briefly turned these minuscule objects into surprisingly strong magnets. This discovery may prove useful for developing future magnetic switches and storage devices.
Published 'Doughnut' beams help physicists see incredibly small objects



A new laser-based technique can create images of structures too tiny to view with traditional microscopes, and without damaging them. The approach could help scientists inspect nanoelectronics, including the semiconductors in computer chips.