Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Computers and Math, Physics: Optics
Published A color-based sensor to emulate skin's sensitivity



In a step toward more autonomous soft robots and wearable technologies, researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli.
Published To help autonomous vehicles make moral decisions, researchers ditch the 'trolley problem'



Researchers have developed a new experiment to better understand what people view as moral and immoral decisions related to driving vehicles, with the goal of collecting data to train autonomous vehicles how to make 'good' decisions. The work is designed to capture a more realistic array of moral challenges in traffic than the widely discussed life-and-death scenario inspired by the so-called 'trolley problem.'
Published Scientists build tiny biological robots from human cells



Scientists have created tiny moving biological robots from human tracheal cells that can encourage the growth of neurons across artificial 'wounds' in the lab. Using patients' own cells could permit growth of Anthrobots that assist healing and regeneration in the future with no nead for immune suppression.
Published Broadband buzz: Periodical cicadas' chorus measured with fiber optic cables



Through an emerging technology called distributed fiber optic sensing, cables bringing high-speed internet to American households can be used to detect temperature changes, vibrations, and even sound. And periodical cicadas -- the insects that emerge by the billions every 13 or 17 years and make a racket with their mating calls -- are loud enough to be detected. A new study shows how fiber optic sensing could open new pathways for charting populations of these famously ephemeral bugs.
Published What was thought of as noise, points to new type of ultrafast magnetic switching



Researchers discover a new type of ultrafast magnetic switching by investigating fluctuations that normally tend to interfere with experiments as noise.
Published Eye-safe laser technology to diagnose traumatic brain injury



Researchers have designed and developed a novel diagnostic device to detect traumatic brain injury (TBI) by shining a safe laser into the eye.
Published How do you make a robot smarter? Program it to know what it doesn't know



Engineers have come up with a new way to teach robots to know when they don't know. The technique involves quantifying the fuzziness of human language and using that measurement to tell robots when to ask for further directions. Telling a robot to pick up a bowl from a table with only one bowl is fairly clear. But telling a robot to pick up a bowl when there are five bowls on the table generates a much higher degree of uncertainty -- and triggers the robot to ask for clarification.
Published The secret life of an electromagnon



Scientists have revealed how lattice vibrations and spins talk to each other in a hybrid excitation known as an electromagnon. To achieve this, they used a unique combination of experiments on an X-ray free electron laser. Understanding this fundamental process at the atomic level opens the door to ultrafast control of magnetism with light.
Published Nextgen computing: Hard-to-move quasiparticles glide up pyramid edges



A new kind of 'wire' for moving excitons could help enable a new class of devices, perhaps including room temperature quantum computers.
Published Compact accelerator technology achieves major energy milestone



Researchers have demonstrated a compact particle accelerator less than 20 meters long that produces an electron beam with an energy of 10 billion electron volts (10 GeV). There are only two other accelerators currently operating in the U.S. that can reach such high electron energies, but both are approximately 3 kilometers long. This type of accelerator is called a wakefield laser accelerator.
Published Hybrid transistors set stage for integration of biology and microelectronics



Researchers create transistors combining silicon with biological silk, using common microprocessor manufacturing methods. The silk protein can be easily modified with other chemical and biological molecules to change its properties, leading to circuits that respond to biology and the environment.
Published AI for perovskite solar cells: Key to better manufacturing



Tandem solar cells based on perovskite semiconductors convert sunlight to electricity more efficiently than conventional silicon solar cells. In order to make this technology ready for the market, further improvements with regard to stability and manufacturing processes are required. Researchers have succeeded in finding a way to predict the quality of the perovskite layers and consequently that of the resulting solar cells: Assisted by Machine Learning and new methods in Artificial Intelligence (AI), it is possible assess their quality from variations in light emission already in the manufacturing process.
Published First experimental evidence of hopfions in crystals opens up new dimension for future technology



Hopfions, magnetic spin structures predicted decades ago, have become a hot and challenging research topic in recent years. New findings open up new fields in experimental physics: identifying other crystals in which hopfions are stable, studying how hopfions interact with electric and spin currents, hopfion dynamics, and more.
Published Long in the Bluetooth: Scientists develop a more efficient way to transmit data between our devices



Researchers have developed a more energy efficient way of connecting our personal devices. New technology consumes less power than Bluetooth and can improve battery life of tech accessories, including earbuds and fitness trackers. Future applications could see us unlocking a door by touching its handle or shaking hands to exchange phone numbers.
Published People watched other people shake boxes for science: Here's why



When researchers asked hundreds of people to watch other people shake boxes, it took just seconds for almost all of them to figure out what the shaking was for. The deceptively simple work by perception researchers is the first to demonstrate that people can tell what others are trying to learn just by watching their actions. The study reveals a key yet neglected aspect of human cognition, and one with implications for artificial intelligence. 'Just by looking at how someone's body is moving, you can tell what they are trying to learn about their environment,' said author Chaz Firestone, an assistant professor of psychological and brain sciences who investigates how vision and thought interact. 'We do this all the time, but there has been very little research on it.'
Published AI system self-organizes to develop features of brains of complex organisms



Scientists have shown that placing physical constraints on an artificially-intelligent system -- in much the same way that the human brain has to develop and operate within physical and biological constraints -- allows it to develop features of the brains of complex organisms in order to solve tasks.
Published A deep-sea fish inspired researchers to develop supramolecular light-driven machinery



Chemists have developed a bioinspired supramolecular approach to convert photo-switchable molecules from their stable state into metastable one with low-energy red light. Their work enables fast, highly selective, and efficient switching, providing new tools for energy storage, activation of drugs with light, and sensing applications.
Published Novel measurement technique for fluid mixing phenomena using selective color imaging method



A novel measurement technique has been developed to visualize the fluid flow and distribution within two droplets levitated and coalesced in space using fluorescence-emitting particles. This technique enabled the estimation of fluid motion within each droplet, thereby revealing the internal flow caused by surface vibration when the droplet merging promotes fluid mixing.
Published Wearables capture body sounds to continuously monitor health



From heart beats to stomach gurgles, sounds hold important health information. New wireless devices sit on skin to continuously capture these sounds, then stream data to smartphones or tablets in real time. In pilot studies, devices accurately tracked sounds associated with cardiorespiratory function, gastrointestinal activity, swallowing and respiration. The devices are particularly valuable for premature babies, who can experience apneas and gastrointestinal complications, which are accompanied by sounds.
Published Realistic talking faces created from only an audio clip and a person's photo



A team of researchers has developed a computer program that creates realistic videos that reflect the facial expressions and head movements of the person speaking, only requiring an audio clip and a face photo. DIverse yet Realistic Facial Animations, or DIRFA, is an artificial intelligence-based program that takes audio and a photo and produces a 3D video showing the person demonstrating realistic and consistent facial animations synchronised with the spoken audio (see videos).