Showing 20 articles starting at article 581
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Computers and Math, Physics: Optics
Published Efficient training for artificial intelligence


New physics-based self-learning machines could replace the current artificial neural networks and save energy.
Published Material would allow users to 'tune' windows to block targeted wavelengths of light


Researchers have demonstrated a material for next generation dynamic windows, which would allow building occupants to switch their windows between three modes: transparent, or 'normal' windows; windows that block infrared light, helping to keep a building cool; and tinted windows that control glare while maintaining the view.
Published Scientists successfully maneuver robot through living lung tissue


Scientists have shown that their steerable lung robot can autonomously maneuver the intricacies of the lung, while avoiding important lung structures.
Published New method makes microcombs ten times more efficient


Microcombs can help us discover planets outside our solar system and track new diseases in our bodies. But current microcombs are inefficient and unable to reach their full potential. Now, researchers have made microcombs ten times more efficient. Their breakthrough opens the way to new discoveries in space and healthcare and paves the way for high-performance lasers in a range of other technologies.
Published Chameleon-inspired coating could cool and warm buildings through the seasons


As summer turns to fall, many people will be turning off the air conditioning and firing up heaters instead. But traditional heating and cooling systems are energy intensive, and because they typically run on fossil fuels, they aren't sustainable. Now, by mimicking a desert-dwelling chameleon, a team has developed an energy-efficient, cost-effective coating. The material could keep buildings cool in the summers -- or warm in the winters -- without additional energy.
Published Novel organic light-emitting diode with ultralow turn-on voltage for blue emission


An upconversion organic light-emitting diode (OLED) based on a typical blue-fluorescence emitter achieves emission at an ultralow turn-on voltage of 1.47 V. The technology circumvents the traditional high voltage requirement for blue OLEDs, leading to potential advancements in commercial smartphone and large screen displays.
Published Electrons take flight at the nanoscale


A study showing how electrons flow around sharp bends, such as those found in integrated circuits, has the potential to improve how these circuits, commonly used in electronic and optoelectronic devices, are designed.
Published Novel ligands for transition-metal catalysis of photoreactions


Transition metals exchange electrons with supporting ligands to form complexes that facilitate reaction catalysis in several industries, like pharmaceutical production. Both the metal center and the ligand moiety have pivotal roles in enabling catalysis. While numerous transition metal-catalyzed photoreactions have been developed, only a few new ligands have been reported. Researchers from Chiba University have now developed novel ligands to create transition metal complexes, defining new reaction capabilities.
Published Laser-based ice-core sampling for studying climate change


Researchers have developed a new laser-based sampling system for studying the composition of ice cores taken from glaciers. The new system has a 3-mm depth-resolution and is expected to help reconstruct continuous annual temperature changes that occurred thousands to hundreds of thousands of years ago, which will help scientists understand climate change in the past and present.
Published Combustion powers bug-sized robots to leap, lift and race


Researchers combined soft microactuators with high-energy-density chemical fuel to create an insect-scale quadrupedal robot that is powered by combustion and can outrace, outlift, outflex and outleap its electric-driven competitors.
Published Step change in upconversion the key to clean water, green energy and futuristic medicine


Achieving photochemical upconversion in a solid state is a step closer to reality, thanks to a new technique that could unlock vital innovations in renewable energy, water purification and advanced healthcare.
Published Making AI smarter with an artificial, multisensory integrated neuron



The feel of a cat's fur can reveal some information, but seeing the feline provides critical details: is it a housecat or a lion? While the sound of fire crackling may be ambiguous, its scent confirms the burning wood. Our senses synergize to give a comprehensive understanding, particularly when individual signals are subtle. The collective sum of biological inputs can be greater than their individual contributions. Robots tend to follow more straightforward addition, but researchers have now harnessed the biological concept for application in artificial intelligence (AI) to develop the first artificial, multisensory integrated neuron.
Published New camera offers ultrafast imaging at a fraction of the normal cost


In a new paper, researchers report a camera that could offer a much less expensive way to achieve ultrafast imaging for a wide range of applications such as real-time monitoring of drug delivery or high-speed lidar systems for autonomous driving. Researchers show that their new diffraction-gated real-time ultrahigh-speed mapping (DRUM) camera can capture a dynamic event in a single exposure at 4.8 million frames per second.
Published Evolution wired human brains to act like supercomputers


Scientists have confirmed that human brains are naturally wired to perform advanced calculations, much like a high-powered computer, to make sense of the world through a process known as Bayesian inference.
Published Battery-free robots use origami to change shape in mid-air


Researchers have developed small robotic devices that can change how they move through the air by 'snapping' into a folded position during their descent. Each device has an onboard battery-free actuator, a solar power-harvesting circuit and controller to trigger these shape changes in mid-air.
Published A new way to create germ-killing light


A research team has created an aluminum-nitride device that can convert visible light into deep-ultraviolet light through the process of second harmonic generation. This work can lead to the development of practical devices that can sterilize surfaces with ultraviolet radiation while using less energy.
Published Researchers make a significant step towards reliably processing quantum information


Using laser light, researchers have developed the most robust method currently known to control individual qubits made of the chemical element barium. The ability to reliably control a qubit is an important achievement for realizing future functional quantum computers.
Published 'Brainless' robot can navigate complex obstacles


Researchers who created a soft robot that could navigate simple mazes without human or computer direction have now built on that work, creating a 'brainless' soft robot that can navigate more complex and dynamic environments.
Published What do neurons, fireflies and dancing the Nutbush have in common?


Synchronicity is all around us, but it is poorly understood. Computer scientists have now developed new tools to understand how human and natural networks fall in and out of sync.
Published Valleytronics: Innovative way to store and process information up to room temperature


Researchers have found a way to maintain valley polarization at room temperature using novel materials and techniques.