Showing 20 articles starting at article 801
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Computers and Math, Physics: Optics
Published Nanophysics: The right twist


Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.
Published What do the elements sound like?


In chemistry, we have He, Fe and Ca -- but what about do, re and mi? Using a technique called data sonification, a recent college graduate has converted the visible light given off by each of the elements into soundwaves. The notes produced for each element are unique, complex mixtures and are the first step toward an interactive, musical periodic table.
Published Looking from different perspectives! Proper electronic structure of near-infrared absorbing functional dyes discovered


A research group has discovered that near-infrared absorbing dyes, which had previously been considered to have closed-shell electronic structures, have an intermediate electronic structure, between closed- and open-shell structures. They also found that as the wavelength of near-infrared light that can be absorbed becomes longer the contribution of open-shell forms increases within the dye. These newly discovered characteristics are expected to be utilized to develop new near-infrared absorbing dyes that can absorb longer wavelength near-infrared light.
Published New type of entanglement lets scientists 'see' inside nuclei


Nuclear physicists have found a new way to see inside nuclei by tracking interactions between particles of light and gluons. The method relies on harnessing a new type of quantum interference between two dissimilar particles. Tracking how these entangled particles emerge from the interactions lets scientists map out the arrangement of gluons. This approach is unusual for making use of entanglement between dissimilar particles -- something rare in quantum studies.
Published Photosynthesis: Varying roads lead to the reaction center


Chemists use high-precision quantum chemistry to study key elements of super-efficient energy transfer in an important element of photosynthesis.
Published AI 'brain' created from core materials for OLED TVs


A research team develops semiconductor devices for high-performance AI operations by applying IGZO materials widely used in OLED displays.
Published Visualizing spatial distribution of electric properties at microscales with liquid crystal droplets


Existing sensor probes for microelectrical devices can measure only their average electric properties, providing no information on their spatial distribution. Liquid crystal droplets (LCDs) -- microscopic droplets of soft matter that respond to electric field -- are promising in this regard. Accordingly, researchers recently visualized the electric field and electrostatic energy distribution of microstructured electrodes by recording the motion of LCDs under an applied voltage, making for high detection accuracy and spatial resolution.
Published Paper written using ChatGPT demonstrates opportunities and challenges of AI in academia


In an innovative new study, researchers used a series of prompts and questions to encourage ChatGPT to produce the type of content commonly seen in academic publications. Researchers say in their paper's discussion section -- which was written without the software's influence -- that it demonstrates the new levels of sophistication which AI now offers and also the opportunities and challenges it poses for the academic community.
Published Optical switching at record speeds opens door for ultrafast, light-based electronics and computers


Imagine a home computer operating 1 million times faster than the most expensive hardware on the market. Now, imagine that being the industry standard. Physicists hope to pave the way for that reality.
Published Global experts propose a path forward in generating clean power from waste energy


Scientists have created a comprehensive 'roadmap' to guide global efforts to convert waste energy into clean power.
Published New microchip links two Nobel Prize-winning techniques


Physicists have built a new technology on a microchip by combining two Nobel Prize-winning techniques. This microchip could measure distances in materials at high precision, for example underwater or for medical imaging. Because the technology uses sound vibrations instead of light, it is useful for high-precision position measurements in opaque materials. There's no need for complex feedback loops or for tuning certain parameters to get it to operate properly. This makes it a very simple and low-power technology, that is much easier to miniaturize on a microchip. What makes it special is that it doesn't need any precision hardware and is therefore easy to produce. It only requires inserting a laser, and nothing else. The instrument could lead to new techniques to monitor the Earth's climate and human health.
Published Synthesis gas and battery power from sunlight energy


Plants use photosynthesis to harvest energy from sunlight. Now researchers have applied this principle as the basis for developing new sustainable processes which in the future may produce syngas (synthetic gas) for the large-scale chemical industry and be able to charge batteries.
Published 'Inkable' nanomaterial promises big benefits for bendable electronics


An international team of scientists is developing an inkable nanomaterial that they say could one day become a spray-on electronic component for ultra-thin, lightweight and bendable displays and devices.
Published Scientists find a common thread linking subatomic color glass condensate and massive black holes


Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.
Published Ultrafast beam-steering breakthrough


n a major breakthrough in the fields of nanophotonics and ultrafast optics, a research team has demonstrated the ability to dynamically steer light pulses from conventional, so-called incoherent light sources.
Published Scientists open door to manipulating 'quantum light'


How light interacts with matter has always fired the imagination. Now scientists for the first time have demonstrated the ability to manipulate single and double atoms exhibiting the properties of simulated light emission. This creates prospects for advances in photonic quantum computing and low-intensity medical imaging.
Published Instrument adapted from astronomy observation helps capture singular quantum interference effects


By adapting technology used for gamma-ray astronomy, researchers has found X-ray transitions previously thought to have been unpolarized according to atomic physics, are in fact highly polarized.
Published Sculpting quantum materials for the electronics of the future


The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials -- whose exceptional properties stem from quantum physics -- is the most promising way to meet these challenges. An international team has designed a material in which the dynamics of electrons can be controlled by curving the fabric of space in which they evolve. These properties are of interest for next-generation electronic devices, including the optoelectronics of the future.
Published 3D-printed revolving devices can sense how they are moving


Researchers created a system that enables makers to incorporate sensors directly into rotational mechanisms with only one pass in a 3D printer. This gives rotational mechanisms like gearboxes the ability to sense their angular position, rotation speed, and direction of rotation.
Published Displays with more brilliant colors through a fundamental physical concept


New research has shown that a strong coupling of light and material increases the colour brilliance of OLED displays. This increase is independent of the viewing angle and does not affect energy efficiency.