Showing 20 articles starting at article 121

< Previous 20 articles        Next 20 articles >

Categories: Physics: Optics

Return to the site home page

Biology: Cell Biology Physics: Optics
Published

Bio-based resins could offer recyclable future for 3D printing      (via sciencedaily.com)     Original source 

A new type of recyclable resin, made from biosourced materials, has been designed for use in 3D printing applications.

Chemistry: General Energy: Technology Physics: Acoustics and Ultrasound Physics: Optics
Published

Metalens expands Its reach from light to sound      (via sciencedaily.com)     Original source 

Engineers achieve a wide field-of-hearing acoustic metalens free from aberrations.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists create an 'optical conveyor belt' for quasiparticles      (via sciencedaily.com)     Original source 

Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Speedy, secure, sustainable -- that's the future of telecom      (via sciencedaily.com)     Original source 

A new device that can process information using a small amount of light could enable energy-efficient and secure communications.

Physics: General Physics: Optics
Published

Milestone in plasma acceleration      (via sciencedaily.com)     Original source 

Scientists have made a significant advance in laser plasma acceleration. By employing an innovative method, a research team managed to substantially exceed the previous record for proton acceleration. For the first time, they achieved energies that so far have only seemed possible at much larger facilities. As the research group reported, promising applications in medicine and materials science have now become much likelier.

Chemistry: Biochemistry Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

Good vibrations: New tech may lead to smaller, more powerful wireless devices      (via sciencedaily.com)     Original source 

What if your earbuds could do everything your smartphone can, but better? A new class of synthetic materials could allow for smaller devices that use less power.

Physics: Optics
Published

Researchers harness blurred light to 3D print high quality optical components      (via sciencedaily.com)     Original source 

Researchers have developed a new 3D printing method called blurred tomography that can rapidly produce microlenses with commercial-level optical quality. The new method may make it easier and faster to design and fabricate a variety of optical devices.

Physics: Optics
Published

A new, low-cost, high-efficiency photonic integrated circuit      (via sciencedaily.com)     Original source 

Researchers have developed scalable photonic integrated circuits, based on lithium tantalate, marking a significant advancement in optical technologies with potential to widespread commercial applications.

Physics: Optics
Published

Tiny displacements, giant changes in optical properties      (via sciencedaily.com)     Original source 

Researchers reveal a new pathway for designing optical materials using the degree of atomic disorder. The researchers anticipate developing crystals that enable advanced infrared imaging in low light conditions, or to enhance medical imaging devices.

Engineering: Nanotechnology Physics: General Physics: Optics
Published

Researchers 'unzip' 2D materials with lasers      (via sciencedaily.com)     Original source 

Researchers used commercially available tabletop lasers to create tiny, atomically sharp nanostructures in samples of a layered 2D material called hexagonal Boron Nitride (hBN). The new nanopatterning technique is a simple way to modify materials with light--and it doesn't involve an expensive and resource-intensive clean room.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New quantum sensing scheme could lead to enhanced high-precision nanoscopic techniques      (via sciencedaily.com)     Original source 

Researchers have unveiled a quantum sensing scheme that achieves the pinnacle of quantum sensitivity in measuring the transverse displacement between two interfering photons.

Chemistry: General Physics: General Physics: Optics
Published

Tweaking isotopes sheds light on promising approach to engineer semiconductors      (via sciencedaily.com)     Original source 

Scientists have demonstrated that small changes in the isotopic content of thin semiconductor materials can influence their optical and electronic properties, possibly opening the way to new and advanced designs with the semiconductors.

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists arrange atoms in extremely close proximity      (via sciencedaily.com)     Original source 

Physicists developed a technique to arrange atoms in much closer proximity than previously possible, down to 50 nanometers. The group plans to use the method to manipulate atoms into configurations that could generate the first purely magnetic quantum gate -- a key building block for a new type of quantum computer.

Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Physics: Optics
Published

Path to easier recycling of solar modules      (via sciencedaily.com)     Original source 

The use of femtosecond lasers to form glass-to-glass welds for solar modules would make the panels easier to recycle, according to a proof-of-concept study.

Physics: General Physics: Optics
Published

New sensor detects errors in MRI scans      (via sciencedaily.com)     Original source 

A new prototype sensor is capable of detecting errors in MRI scans using laser light and gas. The new sensor can thereby do what is impossible for current electrical sensors -- and hopefully pave the way for MRI scans that are better, cheaper and faster.

Computer Science: Virtual Reality (VR) Physics: Optics
Published

Unveiling a polarized world -- in a single shot      (via sciencedaily.com)     Original source 

Researchers have developed a compact, single-shot polarization imaging system that can provide a complete picture of polarization. By using just two thin metasurfaces, the imaging system could unlock the vast potential of polarization imaging for a range of existing and new applications, including biomedical imaging, augmented and virtual reality systems and smart phones.

Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

This highly reflective black paint makes objects more visible to autonomous cars      (via sciencedaily.com)     Original source 

Driving at night might be a scary challenge for a new driver, but with hours of practice it soon becomes second nature. For self-driving cars, however, practice may not be enough because the lidar sensors that often act as these vehicles' 'eyes' have difficulty detecting dark-colored objects. New research describes a highly reflective black paint that could help these cars see dark objects and make autonomous driving safer.

Biology: Microbiology Physics: Optics
Published

New technology makes 3D microscopes easier to use, less expensive to manufacture      (via sciencedaily.com)     Original source 

3D microscopes are used in applications from the life sciences to semiconductor manufacturing. Now engineers are developing patented and patent-pending innovations making them work faster to capture even more 3D images and less expensive to manufacture.

Chemistry: General Physics: Optics
Published

Laser imaging could offer early detection for at-risk artwork      (via sciencedaily.com)     Original source 

A bright yellow pigment favored a century ago by Impressionists such as Matisse and Van Gogh is losing its luster. Researchers have developed a laser imaging technique that can detect the first tiny signs of the pigment's breakdown before they're visible to the eye. The work could help art conservators take earlier steps to make the color last.