Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Physics: General
Published New study uses machine learning to bridge the reality gap in quantum devices



A study has used the power of machine learning to overcome a key challenge affecting quantum devices. For the first time, the findings reveal a way to close the 'reality gap': the difference between predicted and observed behavior from quantum devices.
Published Solid state battery design charges in minutes, lasts for thousands of cycles



Researchers have developed a new lithium metal battery that can be charged and discharged at least 6,000 times -- more than any other pouch battery cell -- and can be recharged in a matter of minutes. The research not only describes a new way to make solid state batteries with a lithium metal anode but also offers new understanding into the materials used for these potentially revolutionary batteries.
Published Bottled water can contain hundreds of thousands of previously uncounted tiny plastic bits



In recent years, there has been rising concern that tiny particles known as microplastics are showing up basically everywhere on Earth, from polar ice to soil, drinking water and food. Formed when plastics break down into progressively smaller bits, these particles are being consumed by humans and other creatures, with unknown potential health and ecosystem effects. One big focus of research: bottled water, which has been shown to contain tens of thousands of identifiable fragments in each container. Now, using newly refined technology, researchers have entered a whole new plastic world: the poorly known realm of nanoplastics, the spawn of microplastics that have broken down even further. For the first time, they counted and identified these minute particles in bottled water. They found that on average, a liter contained some 240,000 detectable plastic fragments -- 10 to 100 times greater than previous estimates, which were based mainly on larger sizes.
Published Using berry phase monopole engineering for high-temperature spintronic devices



Spin-orbit torque (SOT), an important phenomenon for developing ultrafast and low-power spintronic devices, can be enhanced through Berry phase monopole engineering at high temperatures. In a new study, the temperature dependence of the intrinsic spin Hall effect of TaSi2 was investigated. The results suggest that Berry phase monopole engineering is an effective strategy for achieving high-temperature SOT spintronic devices.
Published Asbestos: The size and shape of inhaled nanofibers could be exclusively responsible for the development of pulmonary fibrosis



The pathogenic potential of inhaling the inert fibrous nanomaterials used in thermal insulation (such as asbestos or fiberglass) is actually connected not to their chemical composition, but instead to their geometrical characteristics and size. This was revealed by a study conducted on glass nanofibers.
Published Engineers invent octopus-inspired technology that can deceive and signal



With a split-second muscle contraction, the greater blue-ringed octopus can change the size and color of the namesake patterns on its skin for purposes of deception, camouflage and signaling. Researchers have drawn inspiration from this natural wonder to develop a technological platform with similar capabilities for use in a variety of fields, including the military, medicine, robotics and sustainable energy.
Published High-performance stretchable solar cells



Engineers have succeeded in implementing a stretchable organic solar cell by applying a newly developed polymer material that demonstrated the world's highest photovoltaic conversion efficiency (19%) while functioning even when stretched for more than 40% of its original state. This new conductive polymer has high photovoltaic properties that can be stretched like rubber. The newly developed polymer is expected to play a role as a power source for next-generation wearable electronic devices.
Published Functional semiconductor made from graphene



Researchers have created the first functional semiconductor made from graphene, a single sheet of carbon atoms held together by the strongest bonds known. The breakthrough throws open the door to a new way of doing electronics.
Published How does corrosion happen? New research examines process on atomic level



New research reveals how corrosion happens on the atomic level.
Published Researchers boost signal amplification in perovskite nanosheets



Perovskite nanosheets show distinctive characteristics with significant applications in science and technology. In a recent study, researchers achieved enhanced signal amplification in CsPbBr3 perovskite nanosheets with a unique waveguide pattern, which enhanced both gain and thermal stability. These advancements carry wide-ranging implications for laser, sensor, and solar cell applications, and can potentially influence areas like environmental monitoring, industrial processes, and healthcare.
Published Better microelectronics from coal



Coal is an abundant resource in the United States that has, unfortunately, contributed to climate change through its use as a fossil fuel. As the country transitions to other means of energy production, it will be important to consider and reevaluate coal's economic role. Coal may actually play a vital role in next-generation electronic devices.
Published Non-toxic quantum dots pave the way towards CMOS shortwave infrared image sensors for consumer electronics



Researchers have fabricated a new high-performance shortwave infrared (SWIR) image sensor based on non-toxic colloidal quantum dots. They report on a new method for synthesizing functional high-quality non-toxic colloidal quantum dots integrable with complementary metal-oxide-semiconductor (CMOS) technology.
Published Using electricity, scientists find promising new method of boosting chemical reactions



Chemists found a way to use electricity to boost a type of chemical reaction often used in synthesizing new candidates for pharmaceutical drugs. The research is an advance in the field of electrochemistry and shows a path forward to designing and controlling reactions -- and making them more sustainable.
Published Aptamers: lifesavers; ion shields: aptamer guardians



Aptamers, nucleic acids capable of selectively binding to viruses, proteins, ions, small molecules, and various other targets, are garnering attention in drug development as potential antibody substitutes for their thermal and chemical stability as well as ability to inhibit specific enzymes or target proteins through three-dimensional binding. They also hold promise for swift diagnoses of colon cancer and other challenging diseases by targeting elusive biomarkers. Despite their utility, these aptamers are susceptible to easy degradation by multiple enzymes, presenting a significant challenge.
Published Breakthrough in organic semiconductor synthesis paves the way for advanced electronic devices



A research team has achieved a significant breakthrough in the field of organic semiconductors. Their successful synthesis and characterization of a novel molecule called 'BNBN anthracene' has opened up new possibilities for the development of advanced electronic devices.
Published Molecules exhibit non-reciprocal interactions without external forces



Researchers have discovered that molecules experience non-reciprocal interactions without external forces. Fundamental forces such as gravity and electromagnetism are reciprocal, where two objects are attracted to each other or are repelled by each other. In our everyday experience, however, interactions don t seem to follow this reciprocal law.
Published Laser-driving a 2D material



Engineers pair vibrating particles, called phonons, with particles of light, called photons, to enhance the nonlinear optical properties of hexagonal boron nitride.
Published Novel catalyst system for CO2 conversion



Researchers are constantly pushing the limits of technology by breaking new ground in CO2 conversion. Their goal is to turn the harmful greenhouse gas into a valuable resource. A novel catalyst system could help reach that goal.
Published Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting



Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.
Published Are diamonds GaN's best friend? Revolutionizing transistor technology



A research team has fabricated a gallium nitride (GaN) transistor using diamond, which of all natural materials has the highest thermal conductivity on earth, as a substrate, and they succeeded in increasing heat dissipation by more than two times compared with conventional transistors. The transistor is expected to be useful not only in the fields of 5G communication base stations, weather radar, and satellite communications, but also in microwave heating and plasma processing.