Showing 20 articles starting at article 621

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Physics: General

Return to the site home page

Chemistry: Biochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Unconventional magnets: Stress reduces frustration      (via sciencedaily.com)     Original source 

An international research team recently demonstrated how magnetism can be actively changed by pressure.

Chemistry: Inorganic Chemistry Energy: Technology Engineering: Graphene
Published

An electrifying improvement in copper conductivity      (via sciencedaily.com)     Original source 

A newly developed, highly conductive copper wire could find applications in the electric grid, as well as in homes and businesses. The finding defies what's been thought about how metals conduct electricity.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New strategy reveals 'full chemical complexity' of quantum decoherence      (via sciencedaily.com)     Original source 

Scientists have developed a method to extract the spectral density for molecules in solvent using simple resonance Raman experiments -- a method that captures the full complexity of chemical environments.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: General
Published

Unveiling molecular origami: A breakthrough in dynamic materials      (via sciencedaily.com)     Original source 

A research team has unveiled a remarkable breakthrough in the form of a two-dimensional (2D) Metal Organic Framework (MOF) that showcases unprecedented origami-like movement at the molecular level. This pioneering study represents a significant leap forward in the field of dynamic materials, while also hinting at futuristic applications in metamaterials and quantum computing.

Energy: Alternative Fuels Physics: General
Published

Filming the microscopic flow of hydrogen atoms in a metal      (via sciencedaily.com)     Original source 

Using conventional X-rays and lasers to detect the atomic state of hydrogen is challenging, given its small size. A group of researchers may have overcome this barrier by unveiling a new visualization technique that employs an optical microscope and polyaniline to paint a better picture of how hydrogen behaves in metals.

Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Geochemistry
Published

Scientists tackle difficult-to-recycle thermoset polymers      (via sciencedaily.com)     Original source 

A team of scientists has got a step closer to making several different types of plastic much easier to recycle, using a method that could be applied to a whole range of difficult-to-recycle polymers, including rubbers, gels and adhesives.

Energy: Nuclear Physics: General
Published

Machine learning boosts search for new materials      (via sciencedaily.com)     Original source 

During X-ray diffraction experiments, bright lasers shine on a sample, producing diffracted images that contain important information about the material's structure and properties. But conventional methods of analyzing these images can be contentious, time-consuming, and often ineffective, so scientists are developing deep learning models to better leverage the data.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

First observation of how water molecules move near a metal electrode      (via sciencedaily.com)     Original source 

A collaborative team of experimental and computational physical chemists has made an important discovery in the field of electrochemistry, shedding light on the movement of water molecules near metal electrodes. This research holds profound implications for the advancement of next-generation batteries utilizing aqueous electrolytes.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

For this emergent class of materials, 'solutions are the problem'      (via sciencedaily.com)     Original source 

Materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs), a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics
Published

Ultrafast lasers map electrons 'going ballistic' in graphene, with implications for next-gen electronic devices      (via sciencedaily.com)     Original source 

Research reveals the ballistic movement of electrons in graphene in real time. The observations could lead to breakthroughs in governing electrons in semiconductors, fundamental components in most information and energy technology.

Energy: Nuclear Physics: General
Published

Newly developed material gulps down hydrogen, spits it out, protects fusion reactor walls      (via sciencedaily.com)     Original source 

A recent advance could enable more efficient compact fusion reactors that are easier to repair and maintain.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A promising pairing: Scientists demonstrate new combination of materials for quantum science      (via sciencedaily.com)     Original source 

For the first time, scientists publish results on a new chip composed of diamond and lithium niobate. The results demonstrate the combination as a promising candidate for quantum devices.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Upcycling leftover cardboard to make a new type of foam packaging      (via sciencedaily.com)     Original source 

With the holiday season in full swing, gifts of all shapes and sizes are being shipped around the world. But all that packaging generates lots of waste, including cardboard boxes and plastic-based foam cushioning. Rather than discard those boxes, researchers have developed a cushioning foam from cardboard waste. Their upcycled material was stronger and more insulating than traditional, plastic foam-based cushioning.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Researchers find way to weld metal foam without melting its bubbles      (via sciencedaily.com)     Original source 

Researchers have identified a welding technique that can be used to join composite metal foam (CMF) components together without impairing the properties that make CMF desirable. CMFs hold promise for a wide array of applications because the pockets of air they contain make them light, strong and effective at insulating against high temperatures.

Chemistry: Inorganic Chemistry Physics: Optics
Published

Researchers create stable hybrid laser by 3D printing micro-optics onto fibers      (via sciencedaily.com)     Original source 

For the first time, researchers have shown that 3D-printed polymer-based micro-optics can withstand the heat and power levels that occur inside a laser. The advance enables inexpensive compact and stable laser sources that would be useful in a variety of applications, including the lidar systems used for autonomous vehicles.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Towards next-generation nanocatalysts to revolutionize active electron transfer      (via sciencedaily.com)     Original source 

Over the years, scientists have proposed many novel molecular systems for photoinduced electron transfer. Researchers have now developed a copolymer-conjugated nanocatalytic system that can drive efficient photoinduced electron transfer. They employed a temperature-responsive ternary random copolymer and coupled it to platinum nanoparticles. By enabling dynamic electron transfer and driving photoinduced hydrogen generation, this innovation can have far-reaching implications for artificial photosynthesis, electrochemical reactions, macromolecular recognition, and bio-inspired soft materials.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Physics: General
Published

Ultra-hard material to rival diamond discovered      (via sciencedaily.com)     Original source 

Scientists have solved a decades-long puzzle and unveiled a near unbreakable substance that could rival diamond, as the hardest material on earth, a study says. Researchers found that when carbon and nitrogen precursors were subjected to extreme heat and pressure, the resulting materials -- known as carbon nitrides -- were tougher than cubic boron nitride, the second hardest material after diamond.

Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hallmark quantum behavior in bouncing droplets      (via sciencedaily.com)     Original source 

In a study thatĀ could help fill some holes in quantum theory, the team recreated a 'quantum bomb tester' in a classical droplet test.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Spinning up control: Propeller shape helps direct nanoparticles      (via sciencedaily.com)     Original source 

Self-propelled nanoparticles could potentially advance drug delivery and lab-on-a-chip systems -- but they are prone to go rogue with random, directionless movements. Now, an international team of researchers has developed an approach to rein in the synthetic particles.