Showing 20 articles starting at article 881

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Physics: General

Return to the site home page

Chemistry: Inorganic Chemistry Geoscience: Earth Science Physics: General
Published

Hot chemistry quickly transforms aromatic molecules into harmful aerosols      (via sciencedaily.com) 

A research group has established key early steps in the conversion of aromatic molecules, a major constituent of traffic and other urban volatile emissions, into aerosol. Their findings increase understanding of the chemical processes that degrade urban air quality and influence climate change.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Sci­en­tists develop fermionic quan­tum pro­ces­sor      (via sciencedaily.com) 

Researchers have designed a new type of quantum computer that uses fermionic atoms to simulate complex physical systems. The processor uses programmable neutral atom arrays and is capable of simulating fermionic models in a hardware-efficient manner using fermionic gates. The team demonstrated how the new quantum processor can efficiently simulate fermionic models from quantum chemistry and particle physics.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Fossil Fuels Energy: Technology
Published

Steam condenser coating could save 460M tons of CO2 annually      (via sciencedaily.com) 

If coal and natural gas power generation were 2% more efficient, then, every year, there could be 460 million fewer tons of carbon dioxide released and 2 trillion fewer gallons of water used. A recent innovation to the steam cycle used in fossil fuel power generation could achieve this.

Chemistry: Inorganic Chemistry Physics: General
Published

Topology's role in decoding energy of amorphous systems      (via sciencedaily.com) 

Researchers used topological data analysis to improve the predictions of physical properties of amorphous materials by machine-learning algorithms. This may allow for cheaper and faster calculations of material properties.

Chemistry: Inorganic Chemistry
Published

New epoxy resin resists flames and reduces waste      (via sciencedaily.com) 

Researchers have developed an epoxy resin that can be repaired and recycled, in addition to being flame-retardant and mechanically strong. Potential applications range from coating for wooden flooring to composites in aerospace and railways.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: General
Published

Deciphering the molecular dynamics of complex proteins      (via sciencedaily.com) 

Which structures do complex proteins adopt in solution? Biophysicists answer this question using the example of ubiquitin dimers as well as a new combination of high-resolution NMR spectroscopy and sophisticated computer simulations.

Chemistry: Inorganic Chemistry Computer Science: Artificial Intelligence (AI) Computer Science: General
Published

Sharing chemical knowledge between human and machine      (via sciencedaily.com) 

Researchers have developed a platform that uses artificial neural networks to translate chemical structural formulae into machine-readable form. With this platform, they have created a tool with which this information from scientific publications can be automatically fed into databases. Until now, this had to be done literally by hand and was time-consuming.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Geoscience: Environmental Issues
Published

New approach shows hydrogen can be combined with electricity to make pharmaceutical drugs      (via sciencedaily.com) 

The world needs greener ways to make chemicals. In a new study, researchers demonstrate one potential path toward this goal by adapting hydrogen fuel cell technologies.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: General
Published

Want to know how light works? Try asking a mechanic      (via sciencedaily.com) 

Physicists use a 350-year-old theorem that explains the workings of pendulums and planets to reveal new properties of light waves.

Physics: General Physics: Optics
Published

Energy and heat transfer: A new 'spin' on ergodicity breaking      (via sciencedaily.com) 

Scientists have observed novel ergodicity-breaking in C60, a highly symmetric molecule composed of 60 carbon atoms arranged on the vertices of a 'soccer ball' pattern (with 20 hexagon faces and 12 pentagon faces). Their results revealed ergodicity breaking in the rotations of C60. Remarkably, they found that this ergodicity breaking occurs without symmetry breaking and can even turn on and off as the molecule spins faster and faster. Understanding ergodicity breaking can help scientists design better-optimized materials for energy and heat transfer.

Chemistry: Inorganic Chemistry Energy: Technology Physics: General Physics: Quantum Physics
Published

Demon hunting: Physicists confirm 67-year-old prediction of massless, neutral composite particle      (via sciencedaily.com) 

In 1956, theoretical physicist David Pines predicted that electrons in a solid can do something strange. While they normally have a mass and an electric charge, Pines asserted that they can combine to form a composite particle that is massless, neutral, and does not interact with light. He called this particle a 'demon.' Now, researchers have finally found Pines' demon 67 years after it was predicted.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum physicists simulate super diffusion on a quantum computer      (via sciencedaily.com) 

Quantum physicists have successfully simulated super diffusion in a system of interacting quantum particles on a quantum computer. This is the first step in doing highly challenging quantum transport calculations on quantum hardware and, as the hardware improves over time, such work promises to shed new light in condensed matter physics and materials science.

Engineering: Nanotechnology Physics: General
Published

Stabilizing precipitate growth at grain boundaries in alloys      (via sciencedaily.com) 

Materials are often considered to be one phase, but many engineering materials contain two or more phases, improving their properties and performance. These two-phase materials have inclusions, called precipitates, embedded in the microstructure. Alloys, a combination of two or more types of metals, are used in many applications, like turbines for jet engines and light-weight alloys for automotive applications, because they have very good mechanical properties due to those embedded precipitates. The average precipitate size, however, tends to increase over time-in a process called coarsening-which results in a degradation of performance for microstructures with nanoscale precipitates.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Unlocking chaos: Ultracold quantum gas reveals insights into wave turbulence      (via sciencedaily.com) 

In the intricate realm of wave turbulence, where predictability falters and chaos reigns, a groundbreaking study has emerged. The new research explores the heart of wave turbulence using an ultracold quantum gas, revealing new insights that could advance our understanding of non-equilibrium physics and have significant implications for various fields.

Computer Science: General Physics: General Physics: Optics
Published

Magnonic computing: Faster spin waves could make novel computing systems possible      (via sciencedaily.com) 

Research is underway around the world to find alternatives to our current electronic computing technology, as great, electron-based systems have limitations. A new way of transmitting information is emerging from the field of magnonics: instead of electron exchange, the waves generated in magnetic media could be used for transmission, but magnonics-based computing has been (too) slow to date. Scientists have now discovered a significant new method: When the intensity is increased, the spin waves become shorter and faster -- another step towards magnon computing.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Switching 'spin' on and off (and up and down) in quantum materials at room temperature      (via sciencedaily.com) 

Researchers have found a way to control the interaction of light and quantum 'spin' in organic semiconductors, that works even at room temperature.

Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Carbon-based quantum technology      (via sciencedaily.com) 

Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Gold buckyballs, oft-used nanoparticle 'seeds' are one and the same      (via sciencedaily.com) 

Chemists have discovered that tiny gold 'seed' particles, a key ingredient in one of the most common nanoparticle recipes, are one and the same as gold buckyballs, 32-atom spheres that are cousins of the Nobel Prize-winning carbon buckyballs discovered in 1985.