Showing 20 articles starting at article 981
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Physics: General
Published Fluorine-based new drug synthesis at lightning speed



Researchers synthesize fluorine-based compound via rapid biphasic (gas and liquid) mixing.
Published Stretching metals at the atomic level allows researchers to create important materials for quantum, electronic, and spintronic applications



A University of Minnesota Twin Cities-led team has developed a first-of-its-kind breakthrough method that makes it easier to create high-quality metal oxide films that are important for various next generation applications such as quantum computing and microelectronics.
Published Demystifying vortex rings in nuclear fusion, supernovae



Better understanding the formation of swirling, ring-shaped disturbances -- known as vortex rings -- could help nuclear fusion researchers compress fuel more efficiently, bringing it closer to becoming a viable energy source. A mathematical model linking these vortices with more pedestrian types, like smoke rings, could help engineers control their behavior in power generation and more.
Published Physical chemists develop photochromic active colloids shedding light on the development of new smart active materials



In nature, the skin of cephalopods (animals with tentacles attached to the head) exhibits unparalleled camouflage ability. Their skin contains pigment groups that can sense changes in environmental light conditions and adjust their appearance through the action of pigment cells. Although intricate in nature, this colour-changing ability is fundamentally based on a mechanical mechanism in which pigment particles are folded or unfolded under the control of radial muscles. Inspired by this natural process, a research team forms dynamic photochromic nanoclusters by mixing cyan, magenta and yellow microbeads, achieving photochromism on a macro scale.
Published An electric vehicle battery for all seasons



Scientists have developed a fluorine-containing electrolyte for lithium-ion batteries whose charging performance remains high in frigid regions and seasons. They also determined why it is so effective.
Published Uncovering universal physics in the dynamics of a quantum system



New experiments using one-dimensional gases of ultra-cold atoms reveal a universality in how quantum systems composed of many particles change over time following a large influx of energy that throws the system out of equilibrium.
Published Curved spacetime in a quantum simulator



The connection between quantum physics and the theory of relativity is extremely hard to study. But now, scientists have set up a model system, which can help: Quantum particles can be tuned in such a way that the results can be translated into information about other systems, which are much harder to observe. This kind of 'quantum simulator' works very well and can lead to new insights about the nature of relativity and quantum physics.
Published Scientists reveal breakthrough that could lead to cleaner hydrogen energy



Chemists have taken a big step toward splitting hydrogen and oxygen molecules to make pure hydrogen -- without using fossil fuels. Results from pulse radiolysis experiments have laid bare the complete reaction mechanism for an important group of 'water-splitting' catalysts. The work means scientists are closer to making pure hydrogen from renewable energy, an energy source that could contribute to a greener future for the nation and world.
Published Simulation provides images from the carbon nucleus



What does the inside of a carbon atom's nucleus look like? A new study provides a comprehensive answer to this question. In the study, the researchers simulated all known energy states of the nucleus. These include the puzzling Hoyle state. If it did not exist, carbon and oxygen would only be present in the universe in tiny traces. Ultimately, we therefore also owe it our own existence.
Published New priming method improves battery life, efficiency



Engineers have developed a readily scalable method to optimize a silicon anode priming method that increases lithium-ion battery performance by 22% to 44%.
Published Metal-filtering sponge removes lead from water



Engineers have developed a new sponge that can remove metals -- including toxic heavy metals like lead and critical metals like cobalt -- from contaminated water, leaving safe, drinkable water behind. In proof-of-concept experiments, the researchers tested their new sponge on a highly contaminated sample of tap water, containing more than 1 part per million of lead. With one use, the sponge filtered lead to below detectable levels.
Published Milk reaction inspires new way to make highly conductive gel films



A research team has developed what they call a 'dip-and-peel' strategy for simple and rapid fabrication of two-dimensional ionogel membranes. By dipping sustainable biomass materials in certain solvents, molecules naturally respond by arranging themselves into functional thin films at the edge of the material that can easily be removed using nothing more than a simple set of tweezers.
Published With new experimental method, researchers probe spin structure in 2D materials for first time



In the study, a team of researchers describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation.
Published Researcher uses artificial intelligence to discover new materials for advanced computing



Researchers have identified novel van der Waals (vdW) magnets using cutting-edge tools in artificial intelligence (AI). In particular, the team identified transition metal halide vdW materials with large magnetic moments that are predicted to be chemically stable using semi-supervised learning. These two-dimensional (2D) vdW magnets have potential applications in data storage, spintronics, and even quantum computing.
Published A better route to benzocyclobutenes, sought-after buildingblocks for drugs



Chemists devise a new, C-H activation-based method for the synthesis of BCBs.
Published Physicists discover 'stacked pancakes of liquid magnetism'



Physicists have discovered stacked pancakes of 'liquid' magnetism that may account for the strange electronic behavior of some layered helical magnets.
Published Quantum electrodynamics verified with exotic atoms



Adapting a detector developed for space X-ray observation, researchers have successfully verify strong-field quantum electrodynamics with exotic atoms.
Published Unlocking the power of photosynthesis for clean energy production



Researchers are embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst. By leveraging the unique properties of microorganisms and nanomaterials, the system has the potential to replace current approaches that derive hydrogen from fossil fuels, revolutionizing the way hydrogen fuel is produced and unlocking a powerful source of renewable energy.
Published Scintillating science: Researchers improve materials for radiation detection and imaging technology



A team of researchers has improved a new generation of organic-inorganic hybrid materials that can improve image quality in X-ray machines, CT scans and other radiation detection and imaging technologies.
Published Leaky-wave metasurfaces: A perfect interface between free-space and integrated optical systems



Researchers have developed a new class of integrated photonic devices -- 'leaky-wave metasurfaces' -- that convert light initially confined in an optical waveguide to an arbitrary optical pattern in free space. These are the first to demonstrate simultaneous control of all four optical degrees of freedom. Because they're so thin, transparent, and compatible with photonic integrated circuits, they can be used to improve optical displays, LIDAR, optical communications, and quantum optics.