Showing 20 articles starting at article 361
< Previous 20 articles Next 20 articles >
Categories: Energy: Nuclear, Physics: General
Published Machine learning boosts search for new materials



During X-ray diffraction experiments, bright lasers shine on a sample, producing diffracted images that contain important information about the material's structure and properties. But conventional methods of analyzing these images can be contentious, time-consuming, and often ineffective, so scientists are developing deep learning models to better leverage the data.
Published Computational model captures the elusive transition states of chemical reactions



Researchers developed a way to quickly calculate the transition state structure of a chemical reaction, using machine-learning models.
Published Ultrafast lasers map electrons 'going ballistic' in graphene, with implications for next-gen electronic devices



Research reveals the ballistic movement of electrons in graphene in real time. The observations could lead to breakthroughs in governing electrons in semiconductors, fundamental components in most information and energy technology.
Published Newly developed material gulps down hydrogen, spits it out, protects fusion reactor walls



A recent advance could enable more efficient compact fusion reactors that are easier to repair and maintain.
Published A promising pairing: Scientists demonstrate new combination of materials for quantum science



For the first time, scientists publish results on a new chip composed of diamond and lithium niobate. The results demonstrate the combination as a promising candidate for quantum devices.
Published Extracting uranium from seawater as another source of nuclear fuel



Oceans cover most of Earth's surface and support a staggering number of lifeforms, but they're also home to a dilute population of uranium ions. And -- if we can get these particular ions out of the water -- they could be a sustainable fuel source to generate nuclear power. Researchers have now developed a material to use with electrochemical extraction that attracts hard-to-get uranium ions from seawater more efficiently than existing methods.
Published Ultra-hard material to rival diamond discovered



Scientists have solved a decades-long puzzle and unveiled a near unbreakable substance that could rival diamond, as the hardest material on earth, a study says. Researchers found that when carbon and nitrogen precursors were subjected to extreme heat and pressure, the resulting materials -- known as carbon nitrides -- were tougher than cubic boron nitride, the second hardest material after diamond.
Published Hallmark quantum behavior in bouncing droplets



In a study that could help fill some holes in quantum theory, the team recreated a 'quantum bomb tester' in a classical droplet test.
Published Chance twists ordered carbon nanotubes into 'tornado films'



Scientists have developed two new methods to create ordered carbon nanotube films with either a left- or right-handed chiral pattern.
Published Hybrid device significantly improves existing, ubiquitous laser technology



Researchers have developed a chip-scale laser source that enhances the performance of semiconductor lasers while enabling the generation of shorter wavelengths. This pioneering work represents a significant advance in the field of photonics, with implications for telecommunications, metrology, and other high-precision applications.
Published Polaritons open up a new lane on the semiconductor highway



On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'
Published Ancient stars made extraordinarily heavy elements



How heavy can an element be? An international team of researchers has found that ancient stars were capable of producing elements with atomic masses greater than 260, heavier than any element on the periodic table found naturally on Earth. The finding deepens our understanding of element formation in stars.
Published Bowtie resonators that build themselves bridge the gap between nanoscopic and macroscopic



Two nanotechnology approaches converge by employing a new generation of fabrication technology. It combines the scalability of semiconductor technology with the atomic dimensions enabled by self-assembly.
Published Diamonds and rust help unveil 'impossible' quasi-particles



Researchers have discovered magnetic monopoles -- isolated magnetic charges -- in a material closely related to rust, a result that could be used to power greener and faster computing technologies.
Published Optical data storage breakthrough



Physicists have developed a technique with the potential to enhance optical data storage capacity in diamonds. This is possible by multiplexing the storage in the spectral domain.
Published New theory unites Einstein's gravity with quantum mechanics



The prevailing assumption has been that Einstein's theory of gravity must be modified, or 'quantized', in order to fit within quantum theory. This is the approach of two leading candidates for a quantum theory of gravity, string theory and loop quantum gravity. But a new theory challenges that consensus and takes an alternative approach by suggesting that spacetime may be classical -- that is, not governed by quantum theory at all.
Published Quantum physics: Superconducting Nanowires Detect Single Protein Ions



An international research team has achieved a breakthrough in the detection of protein ions: Due to their high energy sensitivity, superconducting nanowire detectors achieve almost 100% quantum efficiency and exceed the detection efficiency of conventional ion detectors at low energies by a factor of up to a 1,000. In contrast to conventional detectors, they can also distinguish macromolecules by their impact energy. This allows for more sensitive detection of proteins and it provides additional information in mass spectrometry.
Published Engineers tackle hard-to-map class of materials



Materials scientists mapped the structural features of a 2D ferroelectric material made of tin and selenium atoms using a new technique that can be applied to other 2D van der Waals ferroelectrics, unlocking their potential for use in electronics and other applications.
Published Harvesting more solar energy with supercrystals



Hydrogen is a building block for the energy transition. To obtain it with the help of solar energy, researchers have developed new high-performance nanostructures. The material holds a world record for green hydrogen production with sunlight.
Published Control over friction, from small to large scales



Friction is hard to predict and control, especially since surfaces that come in contact are rarely perfectly flat. New experiments demonstrate that the amount of friction between two silicon surfaces, even at large scales, is determined by the forming and rupturing of microscopic chemical bonds between them. This makes it possible to control the amount of friction using surface chemistry techniques.