Showing 20 articles starting at article 1001

< Previous 20 articles        Next 20 articles >

Categories: Energy: Technology, Physics: General

Return to the site home page

Physics: General Physics: Quantum Physics
Published

STAR physicists track sequential 'melting' of upsilons      (via sciencedaily.com) 

Scientists using the Relativistic Heavy Ion Collider (RHIC) to study some of the hottest matter ever created in a laboratory have published their first data showing how three distinct variations of particles called upsilons sequentially 'melt,' or dissociate, in the hot goo.

Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Space Physics: General Space: Astrophysics Space: Cosmology Space: General
Published

Spatial patterns in distribution of galaxies      (via sciencedaily.com) 

In an unlikely pairing, a chemist and an astrophysicist applied the tools of statistical mechanics to find similarities in spatial patterns across length scales.

Computer Science: Artificial Intelligence (AI) Computer Science: General Energy: Technology Engineering: Robotics Research
Published

Researchers develop soft robot that shifts from land to sea with ease      (via sciencedaily.com) 

Most animals can quickly transition from walking to jumping to crawling to swimming if needed without reconfiguring or making major adjustments. Most robots cannot. But researchers have now created soft robots that can seamlessly shift from walking to swimming, for example, or crawling to rolling using a bistable actuator made of 3D-printed soft rubber containing shape-memory alloy springs that react to electrical currents by contracting, which causes the actuator to bend. The team used this bistable motion to change the actuator or robot's shape. Once the robot changes shape, it is stable until another electrical charge morphs it back to its previous configuration.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Magnetism fosters unusual electronic order in quantum material      (via sciencedaily.com) 

Physicists have published an array of experimental evidence showing that the ordered magnetic arrangement of electrons in crystals of iron-germanium plays an integral role in bringing about an ordered electronic arrangement called a charge density wave that the team discovered in the material last year.

Energy: Technology Engineering: Nanotechnology
Published

Are piezoelectrics good for generating electricity? Perhaps, but we must decide how to evaluate them      (via sciencedaily.com) 

A 'best practice' protocol for researchers developing piezoelectric materials has been developed by scientists. The protocol was developed by an international team led by physicists in response to findings that experimental reports lack consistency. The researchers made the shocking discovery that nine out of 10 scientific papers miss experimental information that is crucial to ensure the reproducibility of the reported work.

Chemistry: Biochemistry Physics: General Physics: Optics
Published

Scientists demonstrate time reflection of electromagnetic waves in a groundbreaking experiment      (via sciencedaily.com)     Original source 

Scientists have hypothesized for over six decades the possibility of observing a form of wave reflections known as temporal, or time, reflections. Researchers detail a breakthrough experiment in which they were able to observe time reflections of electromagnetic signals in a tailored metamaterial.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

3D internal structure of rechargeable batteries revealed      (via sciencedaily.com) 

Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.

Chemistry: Inorganic Chemistry Energy: Technology Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Experiment unlocks bizarre properties of strange metals      (via sciencedaily.com) 

Physicists are learning more about the bizarre behavior of 'strange metals,' which operate outside the normal rules of electricity.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Some stirring required: Fluid mixing enables scalable manufacturing of soft polymer structures      (via sciencedaily.com) 

Researchers have developed and demonstrated an efficient and scalable technique that allows them to manufacture soft polymer materials in a dozen different structures, or 'morphologies,' from ribbons and nanoscale sheets to rods and branched particles. The technique allows users to finely tune the morphology of the materials at the micro- and nano-scale.

Physics: General Physics: Optics Physics: Quantum Physics
Published

Ringing an electronic wave: Elusive massive phason observed in a charge density wave      (via sciencedaily.com) 

Researchers have detected the existence of a charge density wave of electrons that acquires mass as it interacts with the background lattice ions of the material over long distances.

Chemistry: Inorganic Chemistry Energy: Technology
Published

Electrocatalysis under the atomic force microscope      (via sciencedaily.com) 

A further development in atomic force microscopy now makes it possible to simultaneously image the height profile of nanometer-fine structures as well as the electric current and the frictional force at solid-liquid interfaces. A team has succeeded in analyzing electrocatalytically active materials and gaining insights that will help optimize catalysts. The method is also potentially suitable for studying processes on battery electrodes, in photocatalysis or on active biomaterials.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

In the world's smallest ball game, scientists throw and catch single atoms using light      (via sciencedaily.com) 

Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.

Energy: Batteries Physics: General
Published

3D battery imaging reveals the secret real-time life of lithium metal cells      (via sciencedaily.com) 

Innovative battery researchers have cracked the code to creating real-time 3D images of the promising but temperamental lithium metal battery as it cycles. A team has succeeded in observing how the lithium metal in the cell behaves as it charges and discharges. The new method may contribute to batteries with higher capacity and increased safety in our future cars and devices.

Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hitting nuclei with light may create fluid primordial matter      (via sciencedaily.com) 

A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.

Computer Science: General Energy: Technology Engineering: Nanotechnology Physics: General
Published

New kind of transistor could shrink communications devices on smartphones      (via sciencedaily.com) 

One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team has now demonstrated a reconfigurable transistor using that material. Their work paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities.

Chemistry: Inorganic Chemistry Physics: General
Published

A surprising way to trap a microparticle      (via sciencedaily.com) 

New study finds obstacles can trap rolling microparticles in fluid. Through simulations and experiments, physicists attribute the trapping effect to stagnant pockets of fluid, created by hydrodynamics. Random motions of the molecules within the fluid then 'kick' the microroller into a stagnant pocket, effectively trapping it.

Chemistry: General Chemistry: Inorganic Chemistry Offbeat: Computers and Math Physics: General
Published

Viable superconducting material created, say researchers      (via sciencedaily.com) 

Researchers report the creation of a superconducting material at both a temperature and pressure low enough for practical applications. In a new paper, the researchers describe a nitrogen-doped lutetium hydride that exhibits superconductivity at 69 degrees Fahrenheit and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.

Chemistry: Thermodynamics Energy: Technology
Published

New 'camera' with shutter speed of 1 trillionth of a second sees through dynamic disorder of atoms      (via sciencedaily.com) 

Researchers have developed a new 'camera' that sees the local disorder in materials. Its key feature is a variable shutter speed: because the disordered atomic clusters are moving, when the team used a slow shutter, the dynamic disorder blurred out, but when they used a fast shutter, they could see it. The method uses neutrons to measure atomic positions with a shutter speed of around one picosecond, a trillion times faster than normal camera shutters.