Showing 20 articles starting at article 1021

< Previous 20 articles        Next 20 articles >

Categories: Energy: Technology, Physics: General

Return to the site home page

Energy: Batteries Energy: Technology
Published

Electric vehicle batteries could get big boost with new polymer coating      (via sciencedaily.com) 

Scientists have developed a polymer coating that could enable longer lasting, more powerful lithium-ion batteries for electric vehicles. The advance opens up a new approach to developing EV batteries that are more affordable and easy to manufacture.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Graphene quantum dots show promise as novel magnetic field sensors      (via sciencedaily.com) 

Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Two-dimensional quantum freeze      (via sciencedaily.com) 

Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.

Chemistry: General Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

An innovative twist on quantum bits: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits      (via sciencedaily.com) 

Scientists develop method for chemically modifying nanoscale tubes of carbon atoms, so they can host spinning electrons to serve as stable quantum bits in quantum technologies.

Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology
Published

Controlling electric double layer dynamics for next generation all-solid-state batteries      (via sciencedaily.com) 

Development of all-solid-state batteries is crucial to achieve carbon neutrality. However, their high surface resistance causes these batteries to have low output, limiting their applications. To this end, researchers have employed a novel technique to investigate and modulate electric double layer dynamics at the solid/solid electrolyte interface. The researchers demonstrate unprecedented control of response speed by over two orders of magnitude, a major steppingstone towards realization of commercial all-solid-state batteries.

Physics: General Physics: Quantum Physics
Published

Destroying the superconductivity in a kagome metal      (via sciencedaily.com) 

A recent study has uncovered a distinct disorder-driven superconductor-insulator transition. This first electric control of superconductivity and quantum Hall effect in a candidate material for future low-energy electronics has promise to reduce the rising, unsustainable energy cost of computing.

Chemistry: General Energy: Batteries Energy: Technology
Published

Extreme fast charging capability in lithium-ion batteries      (via sciencedaily.com) 

Lithium-ion batteries dominate among energy storage devices and are the battery of choice for the electric vehicle industry. Improving battery performance is a constant impetus to current research in this field. Towards this end, a group of researchers has synthesized a lithium borate-type aqueous polyelectrolyte binder for graphite anodes. Their new binder helped improve Li-ion diffusion and lower impedance compared to conventional batteries.

Physics: General
Published

Ice-cold electron beams for ultra-compact X-ray lasers      (via sciencedaily.com)     Original source 

Ice-cold electron beams could pave the way to reducing X-ray free-electron lasers (X-FELs) to a fraction of their current size.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum chemistry: Molecules caught tunneling      (via sciencedaily.com) 

Quantum effects can play an important role in chemical reactions. Physicists have now observed a quantum mechanical tunneling reaction in experiments. The observation can also be described exactly in theory. The scientists provide an important reference for this fundamental effect in chemistry. It is the slowest reaction with charged particles ever observed.

Engineering: Nanotechnology Physics: General Physics: Optics
Published

A motion freezer for many particles      (via sciencedaily.com) 

From the way that particles scatter light, it is possible to calculate a special light field that can slow these particles down. This is a new and powerful method to cool particles down to extremely low temperatures.

Energy: Nuclear Physics: General Physics: Quantum Physics
Published

Clear sign that quark-gluon plasma production 'turns off' at low energy      (via sciencedaily.com) 

Physicists report new evidence that production of an exotic state of matter in collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) can be 'turned off' by lowering the collision energy. The findings will help physicists map out the conditions of temperature and density under which the exotic matter, known as a quark-gluon plasma (QGP), can exist and identify key features of the phases of nuclear matter.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New material may offer key to solving quantum computing issue      (via sciencedaily.com) 

A new form of heterostructure of layered two-dimensional (2D) materials may enable quantum computing to overcome key barriers to its widespread application, according to an international team of researchers.

Energy: Alternative Fuels Energy: Technology
Published

Corralling ions improves viability of next generation solar cells      (via sciencedaily.com) 

Researchers have discovered that channeling ions into defined pathways in perovskite materials improves the stability and operational performance of perovskite solar cells. The finding paves the way for a new generation of lighter, more flexible, and more efficient solar cell technologies suitable for practical use.

Chemistry: General Chemistry: Thermodynamics Energy: Technology
Published

New method creates material that could create the next generation of solar cells      (via sciencedaily.com) 

Perovskites, a family of materials with unique electric properties, show promise for use in a variety fields, including next-generation solar cells. A team of scientists has now created a new process to fabricate large perovskite devices that is more cost- and time-effective than previously possible and that they said may accelerate future materials discovery.

Chemistry: General Engineering: Nanotechnology Physics: General Physics: Optics
Published

Fastest laser camera films combustion in real time      (via sciencedaily.com) 

A research team has developed one of the world's fastest single-shot laser cameras, which is at least a thousand times faster than today's most modern equipment for combustion diagnostics. The discovery has enormous significance for studying the lightning-fast combustion of hydrocarbons.

Energy: Nuclear Physics: General
Published

Scientists identify new mechanism of corrosion      (via sciencedaily.com) 

It started with a mystery: How did molten salt breach its metal container? Understanding the behavior of molten salt, a proposed coolant for next-generation nuclear reactors and fusion power, is a question of critical safety for advanced energy production. The multi-institutional research team, co-led by Penn State, initially imaged a cross-section of the sealed container, finding no clear pathway for the salt appearing on the outside. The researchers then used electron tomography, a 3D imaging technique, to reveal the tiniest of connected passages linking two sides of the solid container. That finding only led to more questions for the team investigating the strange phenomenon.

Computer Science: General Energy: Technology
Published

A new chip for decoding data transmissions demonstrates record-breaking energy efficiency      (via sciencedaily.com) 

A new chip called ORBGRAND can decode any code applied to data transmitted over the internet with maximum accuracy and between 10 and 100 times more energy efficiency than other methods.

Chemistry: Inorganic Chemistry Energy: Technology Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Heterostructures support predictions of counterpropagating charged edge modes at the v=2/3 fractional quantum Hall state      (via sciencedaily.com)     Original source 

Researchers have tested models of edge conduction with a device built on top of the semiconductor heterostructure which consists of gold gates that come close together. Voltage is applied on the gates to direct the edge states through the middle of the point contact, where they are close enough that quantum tunneling can occur between the edge states on opposite sides the sample. Changes in the electrical current flowing through the device are used to test the theorists' predictions.

Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Let there be (controlled) light      (via sciencedaily.com) 

In the very near future, quantum computers are expected to revolutionize the way we compute, with new approaches to database searches, AI systems, simulations and more. But to achieve such novel quantum technology applications, photonic integrated circuits which can effectively control photonic quantum states -- the so-called qubits -- are needed. Physicists have made a breakthrough in this effort: for the first time, they demonstrated the controlled creation of single-photon emitters in silicon at the nanoscale.