Showing 20 articles starting at article 561
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Physics: General
Published What was thought of as noise, points to new type of ultrafast magnetic switching



Researchers discover a new type of ultrafast magnetic switching by investigating fluctuations that normally tend to interfere with experiments as noise.
Published The secret life of an electromagnon



Scientists have revealed how lattice vibrations and spins talk to each other in a hybrid excitation known as an electromagnon. To achieve this, they used a unique combination of experiments on an X-ray free electron laser. Understanding this fundamental process at the atomic level opens the door to ultrafast control of magnetism with light.
Published Nextgen computing: Hard-to-move quasiparticles glide up pyramid edges



A new kind of 'wire' for moving excitons could help enable a new class of devices, perhaps including room temperature quantum computers.
Published Compact accelerator technology achieves major energy milestone



Researchers have demonstrated a compact particle accelerator less than 20 meters long that produces an electron beam with an energy of 10 billion electron volts (10 GeV). There are only two other accelerators currently operating in the U.S. that can reach such high electron energies, but both are approximately 3 kilometers long. This type of accelerator is called a wakefield laser accelerator.
Published New way of searching for dark matter



Wondering whether whether Dark Matter particles actually are produced inside a jet of standard model particles, led researchers to explore a new detector signature known as semi-visible jets, which scientists never looked at before.
Published Wave devouring propulsion: A revolutionary green technology for maritime sustainability



A new form of wave devouring propulsion (WDP) could power ships and help to cut greenhouse gas emissions in the maritime industry.
Published 'Strange metal' is strangely quiet in noise experiment



Experiments have provided the first direct evidence that electricity seems to flow through 'strange metals' in an unusual liquid-like form.
Published Hybrid transistors set stage for integration of biology and microelectronics



Researchers create transistors combining silicon with biological silk, using common microprocessor manufacturing methods. The silk protein can be easily modified with other chemical and biological molecules to change its properties, leading to circuits that respond to biology and the environment.
Published First experimental evidence of hopfions in crystals opens up new dimension for future technology



Hopfions, magnetic spin structures predicted decades ago, have become a hot and challenging research topic in recent years. New findings open up new fields in experimental physics: identifying other crystals in which hopfions are stable, studying how hopfions interact with electric and spin currents, hopfion dynamics, and more.
Published Long in the Bluetooth: Scientists develop a more efficient way to transmit data between our devices



Researchers have developed a more energy efficient way of connecting our personal devices. New technology consumes less power than Bluetooth and can improve battery life of tech accessories, including earbuds and fitness trackers. Future applications could see us unlocking a door by touching its handle or shaking hands to exchange phone numbers.
Published Research reveals rare metal could offer revolutionary switch for future quantum devices



Quantum scientists have discovered a rare phenomenon that could hold the key to creating a 'perfect switch' in quantum devices which flips between being an insulator and superconductor.
Published New computer code for mechanics of tissues and cells in three dimensions



Biological materials are made of individual components, including tiny motors that convert fuel into motion. This creates patterns of movement, and the material shapes itself with coherent flows by constant consumption of energy. Such continuously driven materials are called 'active matter'. The mechanics of cells and tissues can be described by active matter theory, a scientific framework to understand shape, flows, and form of living materials. The active matter theory consists of many challenging mathematical equations. Scientists have now developed an algorithm, implemented in an open-source supercomputer code, that can for the first time solve the equations of active matter theory in realistic scenarios. These solutions bring us a big step closer to solving the century-old riddle of how cells and tissues attain their shape and to designing artificial biological machines.
Published Three-pronged approach discerns qualities of quantum spin liquids



In 1973, physicist Phil Anderson hypothesized that the quantum spin liquid, or QSL, state existed on some triangular lattices, but he lacked the tools to delve deeper. Fifty years later, a team has confirmed the presence of QSL behavior in a new material with this structure, KYbSe2.
Published Pushing the boundaries of eco-friendly chemical production



A team of pioneering researchers has made a significant leap forward in the complex world of molecular chemistry. Their focus? Azaarenes, unique molecular puzzle pieces crucial to many everyday products, from eco-friendly agrochemicals to essential medicines. The team developed an innovative way to modify these molecules using light-powered enzymes -- a groundbreaking discovery that holds promise for new industrially relevant chemical reactions and sustainable energy solutions.
Published Hydrogen fuel can be a competitive alternative to gasoline and diesel today



Energy researchers posit hydrogen fuel can potentially be a cost-competitive and environmentally friendly alternative to gasoline and diesel, and that supplying hydrogen for transportation in the greater Houston area can be profitable today.
Published No one-size-fits-all solution for the net-zero grid



As power generation from sources like solar and wind increases, along with the introduction of devices such as heat pumps and batteries, a new optimization tool will help the UK plan for a greener electricity network. The researchers developed an algorithm to model how these smaller networks distributed electricity -- factoring in how local grids could become unbalanced by adding too many heat pumps in a single area or generating more electricity than the grid could accept.
Published Nuclear expansion failure shows simulations require change



A team of researchers looked back at a model that predicted nuclear power would expand dramatically in order to assess the efficacy of energy policies implemented today.
Published Water splitting reaction for green hydrogen gas production improved



Electrochemical catalysts used in water splitting often show poor performance due to low electrical conductance of (oxy)hydroxide species produced in situ. To overcome this challenge, researchers have now designed an electrode with Schottky Junction formed at the interface of metallic Ni-W5N4 and semiconducting NiFeOOH. The proposed electrode shows excellent catalytic activity and can facilitate industrial seawater splitting continuously for 10 days.
Published Riddle of Kondo effect solved in ultimately thin wires



A research team has now directly measured the so-called Kondo effect, which governs the behavior of magnetic atoms surrounded by a sea of electrons: New observations with a scanning tunneling microscope reveal the effect in one-dimensional wires floating on graphene.
Published Using cosmetic ingredient for battery protection



A research team has devised a battery electrode protective film using biopolymers sourced from cosmetic ingredients.