Showing 20 articles starting at article 801
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Physics: General
Published Einstein and Euler put to the test at the edge of the Universe



The cosmos is a unique laboratory for testing the laws of physics, in particular those of Euler and Einstein. Euler described the movements of celestial objects, while Einstein described the way in which celestial objects distort the Universe. Since the discovery of dark matter and the acceleration of the Universe's expansion, the validity of their equations has been put to the test: are they capable of explaining these mysterious phenomena? A team has developed the first method to find out. It considers a never-before-used measure: time distortion.
Published Perovskite solar cells set new record for power conversion efficiency



Perovskite solar cells have attained now attained the extremely high efficiency rate of 24.35% with an active area of 1 cm2. This ground-breaking achievement in maximizing power generation from next-generation renewable energy sources will be crucial to securing the world's energy future.
Published Breakthrough innovation could solve temperature issues for source-gated transistors and lead to low-cost, flexible displays



Low-cost, flexible displays that use very little energy could be a step closer, thanks to an innovation that solves a problem that has plagued source-gated transistors (SGT).
Published New microcomb device advances photonic technology



Researchers have outlined a new high-speed tunable microcomb that could help propel advances in wireless communication, imaging, atomic clocks, and more.
Published Combining twistronics with spintronics could be the next giant leap in quantum electronics



Quantum researchers twist double bilayers of an antiferromagnet to demonstrate tunable moiré magnetism.
Published Inside-out heating and ambient wind could make direct air capture cheaper and more efficient



Chemical engineers use coated carbon fibers and eliminate steam-based heating in their simpler design, which also can be powered by wind energy.
Published Groundwork for future ultra-precise timing links to geosynchronous satellites



Scientists have demonstrated a capability long sought by physicists: transmitting extremely precise time signals through the air between far-flung locations at powers that are compatible with future space-based missions. The results could enable time transfer from the ground to satellites in geosynchronous orbit with femtosecond precision -- 10,000 times better than the existing state-of-the-art satellite approaches. It also would allow for successful synchronization using the bare minimum timing signal strength, which would make the system highly robust in the face of atmospheric disturbances.
Published Vastly more sustainable, cost-effective method to desalinate industrial wastewater



Engineers are developing a cutting-edge process that can reduce energy consumption and cost of water desalination.
Published How tidal range electricity generation could meet future demand and storage problems



Tidal range schemes are financially viable and could lower energy bills say researchers. Research combined a tidal range power generation model with its cost model to demonstrate the viability of tidal power. The research demonstrates the benefits of tidal energy, which does not suffer from unpredictable intermittency as power is generated both day and night, and in windy or calm weather. The creation of a tidal barrage could operate for 120 years or more to meet future demand and storage problems.
Published To boost supply chains, scientists are looking at ways to recover valuable materials from water



Researchers are exploring the different ways of harvesting materials from water.
Published Engineers develop a soft, printable, metal-free electrode



Engineers developed a metal-free, Jelly-like material that is as soft and tough as biological tissue and can conduct electricity similarly to conventional metals. The new material, which is a type of high-performance conducting polymer hydrogel, may one day replace metals in the electrodes of medical devices.
Published Energy harvesting via vibrations: Researchers develop highly durable and efficient device



An international research group has engineered a new energy-generating device by combining piezoelectric composites with carbon fiber-reinforced polymer (CFRP), a commonly used material that is both light and strong. The new device transforms vibrations from the surrounding environment into electricity, providing an efficient and reliable means for self-powered sensors.
Published Terahertz-to-visible light conversion for future telecommunications



A study demonstrates that graphene-based materials can be used to efficiently convert high-frequency signals into visible light, and that this mechanism is ultrafast and tunable. These outcomes open the path to exciting applications in near-future information and communication technologies.
Published Metaverse could put a dent in global warming



For many technology enthusiasts, the metaverse has the potential to transform almost every facet of human life, from work to education to entertainment. Now, new research shows it could have environmental benefits, too.
Published Photosynthesis, key to life on Earth, starts with a single photon



A cutting-edge experiment has revealed the quantum dynamics of one of nature's most crucial processes.
Published For experimental physicists, quantum frustration leads to fundamental discovery



A team of physicists recently announced that they have discovered a new phase of matter. Called the 'chiral bose-liquid state,' the discovery opens a new path in the age-old effort to understand the nature of the physical world.
Published Metamaterials with built-in frustration have mechanical memory



Researchers have discovered how to design materials that necessarily have a point or line where the material doesn't deform under stress, and that even remember how they have been poked or squeezed in the past. These results could be used in robotics and mechanical computers, while similar design principles could be used in quantum computers.
Published New technique in error-prone quantum computing makes classical computers sweat



Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.
Published Hybrid AI-powered computer vision combines physics and big data



Researchers have laid out a new approach to enhance artificial intelligence-powered computer vision technologies by adding physics-based awareness to data-driven techniques. The study offered an overview of a hybrid methodology designed to improve how AI-based machinery sense, interact and respond to its environment in real time -- as in how autonomous vehicles move and maneuver, or how robots use the improved technology to carry out precision actions.
Published Shining potential of missing atoms



Single photons have applications in quantum computation, information networks, and sensors, and these can be emitted by defects in the atomically thin insulator hexagonal boron nitride (hBN). Missing nitrogen atoms have been suggested to be the atomic structure responsible for this activity, but it is difficult to controllably remove them. A team has now shown that single atoms can be kicked out using a scanning transmission electron microscope under ultra-high vacuum.