Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Energy: Fossil Fuels, Physics: General
Published The fuel economy of a microswimmer



The amount of power a microswimmer needs to move can now be determined more easily. Scientists developed a general theorem to calculate the minimal energy required for propulsion. These insights allow a profound understanding for practical applications, such as targeted transport of molecules and substrates.
Published The effects of preheating on vehicle fuel consumption and emissions appear minimal



A new study found that the benefits of car preheating for both fuel economy and emissions are minimal. The researchers focused on vehicle fuel consumption and emissions under cold winter conditions. Of particular interest were cold start emissions and their relation to preheating.
Published Surprising discovery shows electron beam radiation can repair nanostructures



In a surprising new study, researchers have found that the electron beam radiation that they previously thought degraded crystals can actually repair cracks in these nanostructures. The groundbreaking discovery provides a new pathway to create more perfect crystal nanostructures, a process that is critical to improving the efficiency and cost-effectiveness of materials that are used in virtually all electronic devices we use every day.
Published Widely tuneable terahertz lasers boost photo-induced superconductivity in K3C60



Researchers have long been exploring the effect of using tailored laser drives to manipulate the properties of quantum materials away from equilibrium. One of the most striking demonstrations of these physics has been in unconventional superconductors, where signatures of enhanced electronic coherences and super-transport have been documented in the resulting non-equilibrium states. However, these phenomena have not yet been systematically studied or optimized, primarily due to the complexity of the experiments. Technological applications are therefore still far removed from reality. In a recent experiment, this same group of researchers discovered a far more efficient way to create a previously observed metastable, superconducting-like state in K3C60 using laser light.
Published Scientists discover 'flipping' layers in heterostructures to cause changes in their properties



Transition metal dichalcogenide (TMD) semiconductors are special materials that have long fascinated researchers with their unique properties. For one, they are flat, one-atom-thick two-dimensional (2D) materials similar to that of graphene. They are compounds that contain different combinations of the transition metal group (e.g., molybdenum, tungsten) and chalcogen elements (e.g., sulfur, selenium, tellurium).
Published Bringing out the color in zinc



Researchers have synthesized a zinc complex based on two zinc centers that absorbs visible light. They demonstrated that this capability depends on the proximity of the zinc ions, where the complex responds to visible light when the zinc atoms are closer. This new property is expected to expand the utility of zinc, which already offers advantages including biological relevance, cost effectiveness, and low toxicity.
Published X-rays reveal microstructural fingerprints of 3D-printed alloy



Researchers took a novel approach to explore the way microstructure emerges in a 3D-printed metal alloy: They bombarded it with X-rays while the material was being printed.
Published Unifying matter, energy and consciousness



Understanding the interplay between consciousness, energy and matter could bring important insights to our fundamental understanding of reality.
Published Ionic crystal generates molecular ions upon positron irradiation, finds new study



The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.
Published Twisted science: New quantum ruler to explore exotic matter



Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.
Published Discovery made about Fischer Tropsch process could help improve fuel production



A fundamental discovery about the Fischer Tropsch process, a catalytic reaction used in industry to convert coal, natural gas or biomass to liquid fuels, could someday allow for more efficient fuel production. Researchers discovered previously unknown self-sustained oscillations in the Fischer Tropsch process. They found that unlike many catalytic reactions which have one steady state, this reaction periodically moves back and forth from a high to a low activity state. The discovery means that these well-controlled oscillatory states might be used in the future to control the reaction rate and the yields of desired products.
Published New 'Assembly Theory' unifies physics and biology to explain evolution and complexity



An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature. This new work on 'Assembly Theory' represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe.
Published Machine learning used to probe the building blocks of shapes



Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.
Published Lasers deflected using air



Using a novel method, beams of laser light can be deflected using air alone. An invisible grating made only of air is not only immune to damage from the laser light, but it also preserves the original quality of the beam.
Published Intense lasers shine new light on the electron dynamics of liquids



The behavior of electrons in liquids is crucial to understanding many chemical processes that occur in our world. Using advanced lasers that operate at the attosecond, a team of international researchers has revealed further insights into how electrons behave in liquids.
Published Chi-Nu experiment ends with data to support nuclear security, energy reactors



The results of the Chi-Nu physics experiment at Los Alamos National Laboratory have contributed essential, never-before-observed data for enhancing nuclear security applications, understanding criticality safety and designing fast-neutron energy reactors.
Published 3D-printed plasmonic plastic enables large-scale optical sensor production



Researchers have developed plasmonic plastic -- a type of composite material with unique optical properties that can be 3D-printed. This research has now resulted in 3D-printed optical hydrogen sensors that could play an important role in the transition to green energy and industry.
Published Scientists unveil fire-safe fuel



Chemical engineers have designed a fuel that ignites only with the application of electric current. Since it doesn't react to flames and cannot start accidental fires during storage or transport, it is a 'safe' liquid fuel.
Published Down goes antimatter! Gravity's effect on matter's elusive twin is revealed


For the first time, in a unique laboratory experiment at CERN, researchers have observed individual atoms of antihydrogen fall under the effects of gravity. In confirming antimatter and regular matter are gravitationally attracted, the finding rules out gravitational repulsion as the reason why antimatter is largely missing from the observable universe.
Published Powering the quantum revolution: Quantum engines on the horizon



Scientists unveil exciting possibilities for the development of highly efficient quantum devices.