Showing 20 articles starting at article 341

< Previous 20 articles        Next 20 articles >

Categories: Physics: General, Physics: Quantum Computing

Return to the site home page

Chemistry: General Energy: Fossil Fuels Energy: Technology Engineering: Graphene Physics: General
Published

Better microelectronics from coal      (via sciencedaily.com)     Original source 

Coal is an abundant resource in the United States that has, unfortunately, contributed to climate change through its use as a fossil fuel. As the country transitions to other means of energy production, it will be important to consider and reevaluate coal's economic role. Coal may actually play a vital role in next-generation electronic devices.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Non-toxic quantum dots pave the way towards CMOS shortwave infrared image sensors for consumer electronics      (via sciencedaily.com)     Original source 

Researchers have fabricated a new high-performance shortwave infrared (SWIR) image sensor based on non-toxic colloidal quantum dots. They report on a new method for synthesizing functional high-quality non-toxic colloidal quantum dots integrable with complementary metal-oxide-semiconductor (CMOS) technology.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General
Published

Molecules exhibit non-reciprocal interactions without external forces      (via sciencedaily.com)     Original source 

Researchers have discovered that molecules experience non-reciprocal interactions without external forces. Fundamental forces such as gravity and electromagnetism are reciprocal, where two objects are attracted to each other or are repelled by each other. In our everyday experience, however, interactions don t seem to follow this reciprocal law.

Engineering: Graphene Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Laser-driving a 2D material      (via sciencedaily.com)     Original source 

Engineers pair vibrating particles, called phonons, with particles of light, called photons, to enhance the nonlinear optical properties of hexagonal boron nitride.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: General Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting      (via sciencedaily.com)     Original source 

Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.

Chemistry: Biochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Unconventional magnets: Stress reduces frustration      (via sciencedaily.com)     Original source 

An international research team recently demonstrated how magnetism can be actively changed by pressure.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New strategy reveals 'full chemical complexity' of quantum decoherence      (via sciencedaily.com)     Original source 

Scientists have developed a method to extract the spectral density for molecules in solvent using simple resonance Raman experiments -- a method that captures the full complexity of chemical environments.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: General
Published

Unveiling molecular origami: A breakthrough in dynamic materials      (via sciencedaily.com)     Original source 

A research team has unveiled a remarkable breakthrough in the form of a two-dimensional (2D) Metal Organic Framework (MOF) that showcases unprecedented origami-like movement at the molecular level. This pioneering study represents a significant leap forward in the field of dynamic materials, while also hinting at futuristic applications in metamaterials and quantum computing.

Energy: Alternative Fuels Physics: General
Published

Filming the microscopic flow of hydrogen atoms in a metal      (via sciencedaily.com)     Original source 

Using conventional X-rays and lasers to detect the atomic state of hydrogen is challenging, given its small size. A group of researchers may have overcome this barrier by unveiling a new visualization technique that employs an optical microscope and polyaniline to paint a better picture of how hydrogen behaves in metals.

Energy: Nuclear Physics: General
Published

Machine learning boosts search for new materials      (via sciencedaily.com)     Original source 

During X-ray diffraction experiments, bright lasers shine on a sample, producing diffracted images that contain important information about the material's structure and properties. But conventional methods of analyzing these images can be contentious, time-consuming, and often ineffective, so scientists are developing deep learning models to better leverage the data.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics
Published

Ultrafast lasers map electrons 'going ballistic' in graphene, with implications for next-gen electronic devices      (via sciencedaily.com)     Original source 

Research reveals the ballistic movement of electrons in graphene in real time. The observations could lead to breakthroughs in governing electrons in semiconductors, fundamental components in most information and energy technology.

Energy: Nuclear Physics: General
Published

Newly developed material gulps down hydrogen, spits it out, protects fusion reactor walls      (via sciencedaily.com)     Original source 

A recent advance could enable more efficient compact fusion reactors that are easier to repair and maintain.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A promising pairing: Scientists demonstrate new combination of materials for quantum science      (via sciencedaily.com)     Original source 

For the first time, scientists publish results on a new chip composed of diamond and lithium niobate. The results demonstrate the combination as a promising candidate for quantum devices.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Physics: General
Published

Ultra-hard material to rival diamond discovered      (via sciencedaily.com)     Original source 

Scientists have solved a decades-long puzzle and unveiled a near unbreakable substance that could rival diamond, as the hardest material on earth, a study says. Researchers found that when carbon and nitrogen precursors were subjected to extreme heat and pressure, the resulting materials -- known as carbon nitrides -- were tougher than cubic boron nitride, the second hardest material after diamond.

Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hallmark quantum behavior in bouncing droplets      (via sciencedaily.com)     Original source 

In a study thatĀ could help fill some holes in quantum theory, the team recreated a 'quantum bomb tester' in a classical droplet test.

Engineering: Nanotechnology Physics: General Physics: Optics
Published

Chance twists ordered carbon nanotubes into 'tornado films'      (via sciencedaily.com)     Original source 

Scientists have developed two new methods to create ordered carbon nanotube films with either a left- or right-handed chiral pattern.

Physics: General Physics: Optics
Published

Hybrid device significantly improves existing, ubiquitous laser technology      (via sciencedaily.com)     Original source 

Researchers have developed a chip-scale laser source that enhances the performance of semiconductor lasers while enabling the generation of shorter wavelengths. This pioneering work represents a significant advance in the field of photonics, with implications for telecommunications, metrology, and other high-precision applications.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Engineering: Nanotechnology Physics: General Physics: Optics
Published

Polaritons open up a new lane on the semiconductor highway      (via sciencedaily.com)     Original source 

On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'

Chemistry: General Energy: Nuclear Physics: General Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Ancient stars made extraordinarily heavy elements      (via sciencedaily.com)     Original source 

How heavy can an element be? An international team of researchers has found that ancient stars were capable of producing elements with atomic masses greater than 260, heavier than any element on the periodic table found naturally on Earth. The finding deepens our understanding of element formation in stars.