Showing 20 articles starting at article 401

< Previous 20 articles        Next 20 articles >

Categories: Physics: General, Physics: Quantum Computing

Return to the site home page

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Geoscience: Environmental Issues Physics: General
Published

Breakthrough synthesis method improves solar cell stability      (via sciencedaily.com)     Original source 

A new process yields 2D halide perovskite crystal layers of ideal thickness and purity through dynamic control of the crystallization process -- a key step toward ensuring device stability for optoelectronics and photovoltaics.

Chemistry: Inorganic Chemistry Physics: General
Published

New research finds stress and strain changes metal electronic structure      (via sciencedaily.com)     Original source 

New research shows that the electronic structure of metals can strongly affect their mechanical properties.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A superatomic semiconductor sets a speed record      (via sciencedaily.com)     Original source 

The search is on for better semiconductors. A team of chemists describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2. 

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4      (via sciencedaily.com)     Original source 

The hardness of a material normally is set by the strength of chemical bonds between electrons of neighboring atoms, not by freely flowing conduction electrons. Now a team of scientists has shown that current-carrying electrons can make the lattice much softer than usual in the material Sr2RuO4.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Major milestone achieved in new quantum computing architecture      (via sciencedaily.com)     Original source 

Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.

Chemistry: Biochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists simulate interacting quasiparticles in ultracold quantum gas      (via sciencedaily.com)     Original source 

In physics, quasiparticles are used to describe complex processes in solids. In ultracold quantum gases, these quasiparticles can be reproduced and studied. Now scientists have been able to observe in experiments how Fermi polarons -- a special type of quasiparticle -- can interact with each other.

Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Using sound to test devices, control qubits      (via sciencedaily.com)     Original source 

Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material. 

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Achieving large and uniform particle sizes      (via sciencedaily.com)     Original source 

Dispersions of polymer particles in a liquid phase (latexes) have many important applications in coatings technology, medical imaging, and cell biology. A team of researchers has now developed a method to produce stable polystyrene dispersions with unprecedentedly large, and uniform, particle sizes. Narrow size distributions are essential in many advanced technologies, but were previously difficult to produce photochemically.

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Plants and Animals Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

How quantum light 'sees' quantum sound      (via sciencedaily.com)     Original source 

Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: General Physics: Quantum Physics
Published

Unexpected behavior discovered in active particles      (via sciencedaily.com)     Original source 

Physicists have now shown that, depending on the extent to which the propulsion speed of active particles is dependent on their orientation, clusters in different shapes arise in many-particle systems. This might be a possible key to the realization of programmable matter.

Environmental: General Physics: General Physics: Optics Physics: Quantum Physics
Published

Accelerating waves shed light on major problems in physics      (via sciencedaily.com)     Original source 

Researchers at Tampere University and the University of Eastern Finland have reached a milestone in a study where they derived a new kind of wave equation, which applies for accelerating waves. The novel formalism has turned out to be an unexpectedly fertile ground for examining wave mechanics, with direct connections between accelerating waves, general theory of relativity, as well as the arrow of time.

Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers demonstrate a high-speed electrical readout method for graphene nanodevices      (via sciencedaily.com)     Original source 

Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices. 

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Batteries Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A miniature magnetic resonance imager made of diamond      (via sciencedaily.com)     Original source 

The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Electron-rich metals make ceramics tough to crack      (via sciencedaily.com)     Original source 

Engineers have developed a recipe to make a certain class of ceramics tougher and more resistant to cracking. The newfound toughness of these ceramics paves the way for their use in extreme applications, such as spacecraft and other hypersonic vehicles.

Physics: General Physics: Optics Physics: Quantum Physics
Published

Scientists propose super-bright light sources powered by quasiparticles      (via sciencedaily.com)     Original source 

Researchers have proposed ways to use quasiparticles to create light sources as powerful as the most advanced ones in existence today, but much smaller.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Electrical control of quantum phenomenon could improve future electronic devices      (via sciencedaily.com)     Original source 

A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: General
Published

Going rogue: Scientists apply giant wave mechanics on a nanometric scale      (via sciencedaily.com)     Original source 

Researchers have shown how the principles of rogue waves -- huge 30-meter waves that arise unexpectedly in the ocean -- can be applied on a nano scale, with dozens of applications from medicine to manufacturing.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

Milestone: Miniature particle accelerator works      (via sciencedaily.com)     Original source 

Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky. Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. Two teams of laser physicists have just succeeded in demonstrating a nanophotonic electron accelerator.

Engineering: Nanotechnology Physics: General Physics: Optics
Published

Superlensing without a super lens: Physicists boost microscopes beyond limits      (via sciencedaily.com)     Original source 

Attempts to break the diffraction limit with 'super lenses' have all hit the hurdle of extreme visual losses. Now physicists have shown a new pathway to achieve superlensing with minimal losses, breaking through the diffraction limit by a factor of nearly four times. The key to their success was to remove the super lens altogether.

Chemistry: Biochemistry Energy: Technology Engineering: Graphene Physics: General
Published

From a five-layer graphene sandwich, a rare electronic state emerges      (via sciencedaily.com)     Original source 

When stacked in five layers in a rhombohedral pattern, graphene takes on a rare 'multiferroic' state, exhibiting both unconventional magnetism and an exotic electronic behavior known as ferro-valleytricity.