Showing 20 articles starting at article 521

< Previous 20 articles        Next 20 articles >

Categories: Physics: General, Physics: Quantum Computing

Return to the site home page

Biology: Microbiology Engineering: Nanotechnology Physics: Quantum Computing Physics: Quantum Physics
Published

Detection of bacteria and viruses with fluorescent nanotubes      (via sciencedaily.com) 

The new carbon nanotube sensor design resembles a molecular toolbox that can be used to quickly assemble sensors for a variety of purposes -- for instance for detecting bacteria and viruses.

Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics      (via sciencedaily.com) 

Scientists have demonstrated experimentally a long-theorized relationship between electron and nuclear motion in molecules, which could lead to the design of materials for solar cells, electronic displays and other applications that can make use of this powerful quantum phenomenon.

Physics: Quantum Computing Physics: Quantum Physics
Published

Theory for superfluid helium confirmed      (via sciencedaily.com) 

Researchers have achieved a groundbreaking milestone in studying how vortices move in these quantum fluids. A new study of vortex ring motion in superfluid helium provides crucial evidence supporting a recently developed theoretical model of quantized vortices.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers establish criterion for nonlocal quantum behavior in networks      (via sciencedaily.com) 

A new theoretical study provides a framework for understanding nonlocality, a feature that quantum networks must possess to perform operations inaccessible to standard communications technology. By clarifying the concept, researchers determined the conditions necessary to create systems with strong, quantum correlations.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

New superconductors can be built atom by atom      (via sciencedaily.com) 

The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers have now successfully designed superconductors one atom at a time, creating new states of matter.

Physics: Quantum Computing Physics: Quantum Physics Space: Exploration Space: The Solar System
Published

Despite doubts from quantum physicists: Einstein's theory of relativity reaffirmed      (via sciencedaily.com)     Original source 

One of the most basic assumptions of fundamental physics is that the different properties of mass -- weight, inertia and gravitation -- always remain the same in relation to each other. Although all measurements to date confirm the equivalence principle, quantum theory postulates that there should be a violation. This inconsistency between Einstein's gravitational theory and modern quantum theory is the reason why ever more precise tests of the equivalence principle are particularly important. A team has now succeeded in proving with 100 times greater accuracy that passive and active gravitational mass are always equivalent -- regardless of the particular composition of the respective masses.

Computer Science: Quantum Computers Physics: Acoustics and Ultrasound Physics: Quantum Computing Physics: Quantum Physics
Published

Controlling signal routing in quantum information processing      (via sciencedaily.com)     Original source 

Routing signals and isolating them against noise and back-reflections are essential in many practical situations in classical communication as well as in quantum processing. In a theory-experimental collaboration, a team has achieved unidirectional transport of signals in pairs of 'one-way streets'. This research opens up new possibilities for more flexible signaling devices.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists work to prevent information loss in quantum computing      (via sciencedaily.com)     Original source 

Nothing exists in a vacuum, but physicists often wish this weren't the case. If the systems that scientists study could be completely isolated from the outside world, things would be a lot easier. Take quantum computing. It's a field that's already drawing billions of dollars in support from tech investors and industry heavyweights including IBM, Google and Microsoft. But if the tiniest vibrations creep in from the outside world, they can cause a quantum system to lose information.

Physics: Quantum Computing
Published

Researchers make a surprising discovery about the magnetic interactions in a Kagome layered topological magnet      (via sciencedaily.com) 

A team conducted an in-depth investigation of the magnetism of TbMn6Sn6, a Kagome layered topological magnet. They were surprised to find that the magnetic spin reorientation in TbMn6Sn6 occurs by generating increasing numbers of magnetically isotropic ions as the temperature increases.

Mathematics: Modeling Physics: Quantum Computing
Published

Machine learning takes materials modeling into new era      (via sciencedaily.com) 

The arrangement of electrons in matter, known as the electronic structure, plays a crucial role in fundamental but also applied research such as drug design and energy storage. However, the lack of a simulation technique that offers both high fidelity and scalability across different time and length scales has long been a roadblock for the progress of these technologies. Researchers have now pioneered a machine learning-based simulation method that supersedes traditional electronic structure simulation techniques. Their Materials Learning Algorithms (MALA) software stack enables access to previously unattainable length scales.

Engineering: Nanotechnology Physics: Quantum Computing
Published

Researchers grow precise arrays of nanoLEDs      (via sciencedaily.com) 

A new platform enables researchers to 'grow' halide perovskite nanocrystals with precise control over the location and size of each individual crystal, integrating them into nanoscale light-emitting diodes.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Finding the flux of quantum technology      (via sciencedaily.com)     Original source 

We interact with bits and bytes everyday -- whether that's through sending a text message or receiving an email. There's also quantum bits, or qubits, that have critical differences from common bits and bytes. These photons -- particles of light -- can carry quantum information and offer exceptional capabilities that can't be achieved any other way. Unlike binary computing, where bits can only represent a 0 or 1, qubit behavior exists in the realm of quantum mechanics. Through "superpositioning," a qubit can represent a 0, a 1, or any proportion between. This vastly increases a quantum computer's processing speed compared to today's computers. Experts are now investigating the inside of a quantum-dot-based light emitter.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Research breakthrough could be significant for quantum computing future      (via sciencedaily.com)     Original source 

Scientists using one of the world's most powerful quantum microscopes have made a discovery that could have significant consequences for the future of computing. Researchers have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). This new superconductor may provide a solution to one of quantum computing's greatest challenges.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: Quantum Computing
Published

Researchers make a quantum computing leap with a magnetic twist      (via sciencedaily.com)     Original source 

Scientists and engineers have announced a significant advancement in developing fault-tolerant qubits for quantum computing. In a pair of articles, they report that, in experiments with flakes of semiconductor materials -- each only a single layer of atoms thick -- they detected signatures of 'fractional quantum anomalous Hall' (FQAH) states. The team's discoveries mark a first and promising step in constructing a type of fault-tolerant qubit because FQAH states can host anyons -- strange 'quasiparticles' that have only a fraction of an electron's charge. Some types of anyons can be used to make what are called 'topologically protected' qubits, which are stable against any small, local disturbances.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General
Published

Don't wait, desalinate: A new approach to water purification      (via sciencedaily.com)     Original source 

A water purification system separates out salt and other unnecessary particles with an electrified version of dialysis. Successfully applied to wastewater with planned expansion into rivers and seas, the method saves money and saps 90% less energy than its counterparts.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Toggle switch' can help quantum computers cut through the noise      (via sciencedaily.com)     Original source 

What good is a powerful computer if you can't read its output? Or readily reprogram it to do different jobs? People who design quantum computers face these challenges, and a new device may make them easier to solve.

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nanophotonics: Coupling light and matter      (via sciencedaily.com)     Original source 

Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Einstein and Euler put to the test at the edge of the Universe      (via sciencedaily.com)     Original source 

The cosmos is a unique laboratory for testing the laws of physics, in particular those of Euler and Einstein. Euler described the movements of celestial objects, while Einstein described the way in which celestial objects distort the Universe. Since the discovery of dark matter and the acceleration of the Universe's expansion, the validity of their equations has been put to the test: are they capable of explaining these mysterious phenomena? A team has developed the first method to find out. It considers a never-before-used measure: time distortion.

Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Combining twistronics with spintronics could be the next giant leap in quantum electronics      (via sciencedaily.com)     Original source 

Quantum researchers twist double bilayers of an antiferromagnet to demonstrate tunable moiré magnetism.

Physics: General Physics: Optics Physics: Quantum Physics Space: Exploration Space: General
Published

Groundwork for future ultra-precise timing links to geosynchronous satellites      (via sciencedaily.com)     Original source 

Scientists have demonstrated a capability long sought by physicists: transmitting extremely precise time signals through the air between far-flung locations at powers that are compatible with future space-based missions. The results could enable time transfer from the ground to satellites in geosynchronous orbit with femtosecond precision -- 10,000 times better than the existing state-of-the-art satellite approaches. It also would allow for successful synchronization using the bare minimum timing signal strength, which would make the system highly robust in the face of atmospheric disturbances.