Showing 20 articles starting at article 141

< Previous 20 articles        Next 20 articles >

Categories: Physics: General, Physics: Optics

Return to the site home page

Biology: General Biology: Microbiology Physics: Optics
Published

Scientists adapt astronomy method to unblur microscopy images      (via sciencedaily.com)     Original source 

Researchers have adapted a class of techniques employed in astronomy to unblur images of far-away galaxies for use in the life sciences, providing biologists with a faster and cheaper way to get clearer and sharper microscopy images.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Physics
Published

Uncovering the nature of emergent magnetic monopoles      (via sciencedaily.com)     Original source 

To understand the unique physical phenomena associated with the properties of magnetic hedgehogs and antihedgehogs, which behave as virtual magnetic monopoles and antimonopoles respectively, it is essential to study their intrinsic excitations. In a new study, researchers revealed the dynamical nature of collective excitation modes in hedgehog lattices in itinerant chiral magnets. Their findings serve as the foundation for studying the dynamics of emergent magnetic monopoles in magnets.

Chemistry: Thermodynamics Energy: Nuclear Physics: General
Published

New plasma escape mechanism could protect fusion vessels from excessive heat      (via sciencedaily.com)     Original source 

The exhaust heat generated by a fusing plasma in a commercial-scale reactor may not be as damaging to the vessel's innards as once thought, according to new research about escaping plasma particles.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New technique could help build quantum computers of the future      (via sciencedaily.com)     Original source 

Researchers have demonstrated a new method that could enable the large-scale manufacturing of optical qubits. The advance could bring us closer to a scalable quantum computer.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Technology Physics: General
Published

Semiconductor doping and electronic devices: Heating gallium nitride and magnesium forms superlattice      (via sciencedaily.com)     Original source 

A study revealed that a simple thermal reaction of gallium nitride with metallic magnesium results in the formation of a distinctive superlattice structure. This represents the first time researchers have identified the insertion of 2D metal layers into a bulk semiconductor. By carefully observing materials through various cutting-edge characterization techniques, the researchers uncovered new insights into the process of semiconductor doping and elastic strain engineering.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Switching nanomagnets using infrared lasers      (via sciencedaily.com)     Original source 

Physicists have calculated how suitable molecules can be stimulated by infrared light pulses to form tiny magnetic fields. If this is also successful in experiments, the principle could be used in quantum computer circuits.

Computer Science: General Physics: Optics
Published

New computer vision method helps speed up screening of electronic materials      (via sciencedaily.com)     Original source 

A new computer vision technique developed by engineers significantly speeds up the characterization of newly synthesized electronic materials. Such materials might be used in novel solar cells, transistors, LEDs, and batteries.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Offbeat: General Offbeat: Space Physics: Optics Space: General
Published

Researchers engineer new approach for controlling thermal emission      (via sciencedaily.com)     Original source 

If a material absorbs light, it will heat up. That heat must go somewhere, and the ability to control where and how much heat is emitted can protect or even hide such devices as satellites. An international team of researchers has published a novel method for controlling this thermal emission in Science.

Computer Science: General Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

Researchers demonstrate the first chip-based 3D printer      (via sciencedaily.com)     Original source 

Researchers have demonstrated the first chip-based 3D printer, a tiny device that emits reconfigurable beams of visible light into a well of resin that rapidly cures into a solid shape. The advance could enable a 3D printer small enough to fit in the palm of a person's hand.

Chemistry: Biochemistry Physics: Optics
Published

Miniaturizing a laser on a photonic chip      (via sciencedaily.com)     Original source 

Scientists have successfully miniaturized a powerful erbium-based biber laser on a silicon-nitride photonic chip. Since typical erbium-based fiber lasers are large and difficult to scale down, the breakthrough promises major advances in optical communications and sensing technologies.

Physics: General Physics: Optics Physics: Quantum Physics
Published

'Quantum optical antennas' provide more powerful measurements on the atomic level      (via sciencedaily.com)     Original source 

A multi-institutional team has created atomic optical antennas in solids. The team used germanium vacancy centers in diamonds to create an optical energy enhancement of six orders of magnitude, a regime challenging to reach with conventional atomic antenna structures.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Perturbations simplify the study of 'super photons'      (via sciencedaily.com)     Original source 

Thousands of particles of light can merge into a type of 'super photon' under suitable conditions. Physicists call such a state a photon Bose-Einstein condensate. Researchers have now shown that this exotic quantum state obeys a fundamental theorem of physics. This finding now allows one to measure properties of photon Bose-Einstein condensates which are usually difficult to access.

Chemistry: Biochemistry Physics: Optics
Published

With programmable pixels, novel sensor improves imaging of neural activity      (via sciencedaily.com)     Original source 

New camera chip design allows for optimizing each pixel's timing to maximize signal to noise ratio when tracking real-time visual indicator of neural voltage.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Novel diamond quantum magnetometer for ambient condition magnetoencephalography      (via sciencedaily.com)     Original source 

A highly sensitive diamond quantum magnetometer utilizing nitrogen-vacancy centers can achieve millimeter-scale resolution magnetoencephalography (MEG). The novel magnetometer, based on continuous-wave optically detected magnetic resonance, marks a significant step towards realizing ambient condition MEG and other practical applications.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: Optics
Published

Crystal engineering modifies 2D metal halide perovskites into 1D nanowires      (via sciencedaily.com)     Original source 

Engineers have created a patent-pending method that creates layered perovskite nanowires with exceptionally well-defined and flexible cavities that exhibit a wide range of unusual optical properties beyond conventional perovskites.

Chemistry: Thermodynamics Physics: General
Published

Pushing an information engine to its limits      (via sciencedaily.com)     Original source 

The molecules that make up the matter around us are in constant motion. What if we could harness that energy and put it to use? Over 150 years ago Maxwell theorized that if molecules' motion could be measured accurately, this information could be used to power an engine. Until recently this was a thought experiment, but technological breakthroughs have made it possible to build working information engines in the lab. Researchers have now teamed up to build an information engine and test its limits.

Energy: Nuclear Physics: General
Published

AI approach elevates plasma performance and stability across fusion devices      (via sciencedaily.com)     Original source 

Fusion researchers have successfully deployed machine learning methods to suppress harmful plasma edge instabilities without sacrificing plasma performance.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

Towards next-gen functional materials: direct observation of electron transfer in solids      (via sciencedaily.com)     Original source 

Nanoscale electron transfer (ET) in solids is fundamental to the development of multifunctional materials. However, ET in solids is not yet clearly understood. Now, researchers achieved a direct observation of solid-state ET through X-ray crystal analysis by fabricating a novel double-walled non-covalent crystalline nanotube, which can absorb electron donor molecules and maintain its crystalline structure during ET. This innovative approach can lead to the design of novel functional materials soon.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Observing ultrafast photoinduced dynamics in a halogen-bonded supramolecular system      (via sciencedaily.com)     Original source 

Researchers uncover how the halogen bond can be exploited to direct sequential dynamics in the multi-functional crystals, offering crucial insights for developing ultrafast-response times for multilevel optical storage.