Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Physics: General, Physics: Optics
Published A simple quantum internet with significant possibilities



It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.
Published Bio-based resins could offer recyclable future for 3D printing



A new type of recyclable resin, made from biosourced materials, has been designed for use in 3D printing applications.
Published Metalens expands Its reach from light to sound



Engineers achieve a wide field-of-hearing acoustic metalens free from aberrations.
Published Scientists create an 'optical conveyor belt' for quasiparticles



Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.
Published Using artificial intelligence to speed up and improve the most computationally-intensive aspects of plasma physics in fusion



Researchers are using artificial intelligence to perfect the design of the vessels surrounding the super-hot plasma, optimize heating methods and maintain stable control of the reaction for increasingly long periods. A new article explains how a researcher team used machine learning to avoid magnetic perturbations, or disruptions, which destabilize fusion plasma.
Published Speedy, secure, sustainable -- that's the future of telecom



A new device that can process information using a small amount of light could enable energy-efficient and secure communications.
Published Milestone in plasma acceleration



Scientists have made a significant advance in laser plasma acceleration. By employing an innovative method, a research team managed to substantially exceed the previous record for proton acceleration. For the first time, they achieved energies that so far have only seemed possible at much larger facilities. As the research group reported, promising applications in medicine and materials science have now become much likelier.
Published New work extends the thermodynamic theory of computation



Physicists and computer scientists have recently expanded the modern theory of the thermodynamics of computation. By combining approaches from statistical physics and computer science, the researchers introduce mathematical equations that reveal the minimum and maximum predicted energy cost of computational processes that depend on randomness, which is a powerful tool in modern computers.
Published Hide and seek between atoms: Find the dopant



Collaborative efforts decode the mechanism behind stabilizing cathode doping in electric vehicle batteries.
Published Good vibrations: New tech may lead to smaller, more powerful wireless devices



What if your earbuds could do everything your smartphone can, but better? A new class of synthetic materials could allow for smaller devices that use less power.
Published New machine learning algorithm promises advances in computing



Systems controlled by next-generation computing algorithms could give rise to better and more efficient machine learning products, a new study suggests.
Published Researchers harness blurred light to 3D print high quality optical components



Researchers have developed a new 3D printing method called blurred tomography that can rapidly produce microlenses with commercial-level optical quality. The new method may make it easier and faster to design and fabricate a variety of optical devices.
Published Discover optimal conditions for mass production of ultraviolet holograms



Scientists delve into the composition of nanocomposites for ultraviolet metasurface fabrication.
Published A new, low-cost, high-efficiency photonic integrated circuit



Researchers have developed scalable photonic integrated circuits, based on lithium tantalate, marking a significant advancement in optical technologies with potential to widespread commercial applications.
Published Tiny displacements, giant changes in optical properties



Researchers reveal a new pathway for designing optical materials using the degree of atomic disorder. The researchers anticipate developing crystals that enable advanced infrared imaging in low light conditions, or to enhance medical imaging devices.
Published Researchers 'unzip' 2D materials with lasers



Researchers used commercially available tabletop lasers to create tiny, atomically sharp nanostructures in samples of a layered 2D material called hexagonal Boron Nitride (hBN). The new nanopatterning technique is a simple way to modify materials with light--and it doesn't involve an expensive and resource-intensive clean room.
Published The Clues for Cleaner Water



By using experimental electrochemical analyses, mass spectrometry, and computational quantum chemistry modeling, the researchers created an 'atomic-scale storyline' to explain how ozone is generated on NATO electrocatalysts. They identified that some of the nickel in NATO is probably leaching out of the electrodes via corrosion, and these nickel atoms, now floating in the solution near the catalyst, can promote chemical reactions that eventually generate ozone.
Published Experiment opens door for millions of qubits on one chip



Researchers have achieved the first controllable interaction between two hole spin qubits in a conventional silicon transistor. The breakthrough opens up the possibility of integrating millions of these qubits on a single chip using mature manufacturing processes.
Published New quantum sensing scheme could lead to enhanced high-precision nanoscopic techniques



Researchers have unveiled a quantum sensing scheme that achieves the pinnacle of quantum sensitivity in measuring the transverse displacement between two interfering photons.
Published When injecting pure spin into chiral materials, direction matters



The direction in which spin information is injected into chiral materials affects its ability to pass through them. These chiral 'gateways' could be used to design energy-efficient spintronic devices for data storage, communication and computing.