Showing 20 articles starting at article 461

< Previous 20 articles        Next 20 articles >

Categories: Physics: General, Physics: Optics

Return to the site home page

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers add a 'twist' to classical material design      (via sciencedaily.com)     Original source 

Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.

Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

What coffee with cream can teach us about quantum physics      (via sciencedaily.com)     Original source 

A new advancement in theoretical physics could, one day, help engineers develop new kinds of computer chips that might store information for longer in very small objects.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Hacking DNA to make next-gen materials      (via sciencedaily.com)     Original source 

Scientists have developed a universal method for producing a wide variety of designed metallic and semiconductor 3D nanostructures -- the potential base materials for next-generation semiconductor devices, neuromorphic computing, and advanced energy applications. The new method, which uses a 'hacked' form of DNA that instructs molecules to organize themselves into targeted 3D patterns, is the first of its kind to produce robust nanostructures from multiple material classes.

Energy: Nuclear Physics: General Physics: Quantum Physics
Published

Gravity helps show strong force strength in the proton      (via sciencedaily.com)     Original source 

New research conducted by nuclear physicists is using a method that connects theories of gravitation to interactions among the smallest particles of matter. The result is insight into the strong force, a powerful mediator of particle interactions in the subatomic realm. The research has revealed, for the first time, a snapshot of the distribution of the shear strength of the strong force inside the proton -- or how strong an effort must be to overcome the strong force to move an object it holds in its grasp. At its peak, the nuclear physicists found that a force of over four metric tons would be required to overcome the binding power of the strong force.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers find new multiphoton effect within quantum interference of light      (via sciencedaily.com)     Original source 

An international team of researchers has disproved a previously held assumption about the impact of multiphoton components in interference effects of thermal fields (e.g. sunlight) and parametric single photons (generated in non-linear crystals).

Computer Science: General Energy: Technology Physics: General
Published

Manipulated hafnia paves the way for next-gen memory devices      (via sciencedaily.com)     Original source 

A new study outlines progress toward making bulk ferroelectric and antiferroelectric hafnia available for use in a variety of applications, including high-performance computing.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Scientists advance affordable, sustainable solution for flat-panel displays and wearable tech      (via sciencedaily.com)     Original source 

Scientists have developed 'supramolecular ink,' a new 3D-printable OLED (organic light-emitting diode) material made of inexpensive, Earth-abundant elements instead of costly scarce metals. The advance could enable more affordable and environmentally sustainable OLED flat-panel displays as well as 3D-printable wearable technologies and lighting.

Chemistry: Biochemistry Computer Science: General Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General
Published

DNA origami folded into tiny motor      (via sciencedaily.com)     Original source 

Scientists have created a working nanoscale electomotor. The science team designed a turbine engineered from DNA that is powered by hydrodynamic flow inside a nanopore, a nanometer-sized hole in a membrane of solid-state silicon nitride. The tiny motor could help spark research into future applications such as building molecular factories or even medical probes of molecules inside the bloodstream.

Computer Science: Quantum Computers Physics: Acoustics and Ultrasound Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Towards the quantum of sound      (via sciencedaily.com)     Original source 

A team of scientists has succeeded in cooling traveling sound waves in wave-guides considerably further than has previously been possible using laser light. This achievement represents a significant move towards the ultimate goal of reaching the quantum ground state of sound in wave-guides. Unwanted noise generated by the acoustic waves at room temperature can be eliminated. This experimental approach both provides a deeper understanding of the transition from classical to quantum phenomena of sound and is relevant to quantum communication systems and future quantum technologies.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

Researchers create faster and cheaper way to print tiny metal structures with light      (via sciencedaily.com)     Original source 

Researchers have developed a light-based means of printing nano-sized metal structures that is 480 times faster and 35 times cheaper than the current conventional method. It is a scalable solution that could transform a scientific field long reliant on technologies that are prohibitively expensive and slow. Their method is called superluminescent light projection (SLP).

Chemistry: Biochemistry Physics: Optics
Published

Light it up: Reimagining the optical diode effect      (via sciencedaily.com)     Original source 

A research group has discovered significant nonreciprocal optical absorption of LiNiPO4, referred to as the optical diode effect, in which divalent nickel (Ni2+) ions are responsible for magnetism, by passing light at shortwave infrared wavelengths used in optical communications. Furthermore, they have uncovered that it is possible to switch the optical diode effect by applying a magnetic field. This is a step forward in the development of an innovative optical isolator that is more compact and can control light propagation, replacing the conventional optical isolators with complex structures.

Chemistry: General Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Lighting the path: Exploring exciton binding energies in organic semiconductors      (via sciencedaily.com)     Original source 

Organic semiconductors are materials that find applications in various electronic devices. Exciton binding energy is an important attribute that influences the behavior of these materials. Now, researchers have employed advanced spectroscopic techniques to accurately determine these energies for various organic semiconductor materials, with a high precision of 0.1 electron volts. Their study reveals unexpected correlations that are poised to shape the future of organic optoelectronics, influence design principles, and find potential applications in bio-related materials.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

Unlocking the secrets of quasicrystal magnetism: Revealing a novel magnetic phase diagram      (via sciencedaily.com)     Original source 

Non-Heisenberg-type approximant crystals have many interesting properties and are intriguing for researchers of condensed matter physics. However, their magnetic phase diagrams, which are crucial for realizing their potential, remain completely unknown. Now, a team of researchers has constructed the magnetic phase diagram of a non-Heisenberg Tsai-type 1/1 gold-gallium-terbium approximant crystal. This development marks a significant step forward for quasicrystal research and for the realization of magnetic refrigerators and spintronic devices.

Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Chemists create a 2D heavy fermion      (via sciencedaily.com)     Original source 

Researchers have synthesized the first 2D heavy fermion. The material, a layered intermetallic crystal composed of cerium, silicon, and iodine (CeSiI), has electrons that are 1000x heavier and is a new platform to explore quantum phenomena.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Higher measurement accuracy opens new window to the quantum world      (via sciencedaily.com)     Original source 

A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).

Engineering: Nanotechnology Offbeat: General Offbeat: Space Physics: Optics Space: Astronomy Space: Exploration Space: General Space: Structures and Features
Published

The metalens meets the stars      (via sciencedaily.com)     Original source 

Researchers have developed a 10-centimeter-diameter glass metalens that can image the sun, the moon and distant nebulae with high resolution. It is the first all-glass, large-scale metalens in the visible wavelength that can be mass produced using conventional CMOS fabrication technology.

Computer Science: General Physics: General Physics: Optics
Published

Ultrafast laser pulses could lessen data storage energy needs      (via sciencedaily.com)     Original source 

A discovery from an experiment with magnetic materials and ultrafast lasers could be a boon to energy-efficient data storage.

Engineering: Nanotechnology Physics: Optics
Published

Researchers optimize 3D printing of optically active nanostructures      (via sciencedaily.com)     Original source 

The shape, size and optical properties of 3-dimensional nanostructures can now be simulated in advance before they are produced directly with high precision on a wide variety of surfaces. Nanoprobes or optical tweezers with sizes in the nanometre range are now within reach.