Showing 20 articles starting at article 661

< Previous 20 articles        Next 20 articles >

Categories: Physics: General, Physics: Optics

Return to the site home page

Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning used to probe the building blocks of shapes      (via sciencedaily.com)     Original source 

Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.

Physics: General Physics: Optics
Published

Lasers deflected using air      (via sciencedaily.com)     Original source 

Using a novel method, beams of laser light can be deflected using air alone. An invisible grating made only of air is not only immune to damage from the laser light, but it also preserves the original quality of the beam.

Physics: Optics
Published

Next-generation printing: Precise and direct, using optical vortices      (via sciencedaily.com)     Original source 

Researchers have succeeded in printing uniformly sized droplets with a diameter of approximately 100 µm using a liquid film of fluorescent ink. This ink, with a viscosity roughly 100 times that of water, was irradiated with an optical vortex, resulting in prints of exceptional positional accuracy at the micrometer scale.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Intense lasers shine new light on the electron dynamics of liquids      (via sciencedaily.com)     Original source 

The behavior of electrons in liquids is crucial to understanding many chemical processes that occur in our world. Using advanced lasers that operate at the attosecond, a team of international researchers has revealed further insights into how electrons behave in liquids.

Energy: Nuclear Physics: General
Published

Chi-Nu experiment ends with data to support nuclear security, energy reactors      (via sciencedaily.com)     Original source 

The results of the Chi-Nu physics experiment at Los Alamos National Laboratory have contributed essential, never-before-observed data for enhancing nuclear security applications, understanding criticality safety and designing fast-neutron energy reactors.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

3D-printed plasmonic plastic enables large-scale optical sensor production      (via sciencedaily.com)     Original source 

Researchers have developed plasmonic plastic -- a type of composite material with unique optical properties that can be 3D-printed. This research has now resulted in 3D-printed optical hydrogen sensors that could play an important role in the transition to green energy and industry.

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General
Published

Down goes antimatter! Gravity's effect on matter's elusive twin is revealed      (via sciencedaily.com) 

For the first time, in a unique laboratory experiment at CERN, researchers have observed individual atoms of antihydrogen fall under the effects of gravity. In confirming antimatter and regular matter are gravitationally attracted, the finding rules out gravitational repulsion as the reason why antimatter is largely missing from the observable universe.

Chemistry: Biochemistry Physics: Optics Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

New proof for black hole spin      (via sciencedaily.com)     Original source 

The supermassive black hole at the heart of galaxy M87, made famous by the first picture of a black hole shadow, has yielded another first: the jet shooting out from the black hole has been confirmed to wobble, providing direct proof that the black hole is spinning.

Energy: Nuclear Energy: Technology Physics: General Physics: Optics
Published

Milestone for novel atomic clock      (via sciencedaily.com)     Original source 

An international research team has taken a decisive step toward a new generation of atomic clocks. The researchers have created a much more precise pulse generator based on the element scandium, which enables an accuracy of one second in 300 billion years -- that is about a thousand times more precise than the current standard atomic clock based on caesium.

Chemistry: Biochemistry Physics: General Physics: Optics
Published

Making a femtosecond laser out of glass      (via sciencedaily.com)     Original source 

Scientists show that it is possible to make a femtosecond laser that fits in the palm of one's hand using a glass substrate.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Environmental: General Geoscience: Geochemistry Physics: Optics
Published

How organic solar cells could become significantly more efficient      (via sciencedaily.com)     Original source 

The sun sends enormous amounts of energy to the earth. Nevertheless, some of it is lost in solar cells. This is an obstacle in the use of organic solar cells, especially for those viable in innovative applications. A key factor in increasing their performance: Improved transport of the solar energy stored within the material. Now a research group has shown that certain organic dyes can help build virtual highways for the energy.

Chemistry: Biochemistry Chemistry: Thermodynamics Physics: General Physics: Optics Physics: Quantum Physics
Published

Light and sound waves reveal negative pressure      (via sciencedaily.com) 

Negative pressure is a rare and challenging-to-detect phenomenon in physics. Using liquid-filled optical fibers and sound waves, researchers have now discovered a new method to measure it. In collaboration with the Leibniz Institute of Photonic Technologies in

Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Physics: General
Published

Nanofluidic device generates power with saltwater      (via sciencedaily.com)     Original source 

There is a largely untapped energy source along the world's coastlines: the difference in salinity between seawater and freshwater. A new nanodevice can harness this difference to generate power.

Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Physics: Optics
Published

Efficient training for artificial intelligence      (via sciencedaily.com) 

New physics-based self-learning machines could replace the current artificial neural networks and save energy.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Physics: General
Published

One-atom-thick ribbons could improve batteries, solar cells and sensors      (via sciencedaily.com) 

Researchers created nanoribbons made of phosphorus and tiny amounts of arsenic, which they found were able to conduct electricity at temperatures above -140 degrees Celsius, while retaining the highly useful properties of the phosphorus-only ribbons.

Energy: Technology Physics: Optics
Published

Material would allow users to 'tune' windows to block targeted wavelengths of light      (via sciencedaily.com) 

Researchers have demonstrated a material for next generation dynamic windows, which would allow building occupants to switch their windows between three modes: transparent, or 'normal' windows; windows that block infrared light, helping to keep a building cool; and tinted windows that control glare while maintaining the view.

Engineering: Nanotechnology Physics: General
Published

Stabilizing precipitate growth at grain boundaries in alloys      (via sciencedaily.com) 

Materials are often considered to be one phase, but many engineering materials contain two or more phases, improving their properties and performance. These two-phase materials have inclusions, called precipitates, embedded in the microstructure. Alloys, a combination of two or more types of metals, are used in many applications, like turbines for jet engines and light-weight alloys for automotive applications, because they have very good mechanical properties due to those embedded precipitates. The average precipitate size, however, tends to increase over time-in a process called coarsening-which results in a degradation of performance for microstructures with nanoscale precipitates.

Physics: Optics
Published

New method makes microcombs ten times more efficient      (via sciencedaily.com) 

Microcombs can help us discover planets outside our solar system and track new diseases in our bodies. But current microcombs are inefficient and unable to reach their full potential. Now, researchers have made microcombs ten times more efficient. Their breakthrough opens the way to new discoveries in space and healthcare and paves the way for high-performance lasers in a range of other technologies.