Showing 20 articles starting at article 741

< Previous 20 articles        Next 20 articles >

Categories: Physics: General, Physics: Optics

Return to the site home page

Physics: Optics
Published

Scientists trap light inside a magnet      (via sciencedaily.com) 

A new study shows that trapping light inside magnetic materials may dramatically enhance their intrinsic properties. Strong optical responses of magnets are important for the development of magnetic lasers and magneto-optical memory devices, as well as for emerging quantum transduction applications.

Chemistry: Thermodynamics Geoscience: Environmental Issues Offbeat: Earth and Climate Physics: Optics
Published

Clever coating turns lampshades into indoor air purifiers      (via sciencedaily.com) 

Indoor air pollution may have met its match. Scientists have designed catalyst-coated lampshades that transform indoor air pollutants into harmless compounds. The lampshades work with halogen and incandescent light bulbs, and the team is extending the technology so it will also be compatible with LEDs.

Computer Science: General Physics: General Physics: Optics
Published

Magnonic computing: Faster spin waves could make novel computing systems possible      (via sciencedaily.com) 

Research is underway around the world to find alternatives to our current electronic computing technology, as great, electron-based systems have limitations. A new way of transmitting information is emerging from the field of magnonics: instead of electron exchange, the waves generated in magnetic media could be used for transmission, but magnonics-based computing has been (too) slow to date. Scientists have now discovered a significant new method: When the intensity is increased, the spin waves become shorter and faster -- another step towards magnon computing.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Switching 'spin' on and off (and up and down) in quantum materials at room temperature      (via sciencedaily.com) 

Researchers have found a way to control the interaction of light and quantum 'spin' in organic semiconductors, that works even at room temperature.

Biology: Developmental Physics: Optics
Published

New algorithm captures complex 3D light scattering information from live specimens      (via sciencedaily.com) 

Researchers have developed a new algorithm for recovering the 3D refractive index distribution of biological samples that exhibit multiple types of light scattering.

Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Carbon-based quantum technology      (via sciencedaily.com) 

Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.

Physics: Optics
Published

Riding a wave to better medical diagnosis      (via sciencedaily.com) 

Medical imaging via X-rays, CT scans, MRIs and ultrasounds provide health-care professionals with unique perspectives and a better understanding of what's happening inside a patient's body. Using various forms of waves, these machines can visualize many unseen ailments and diseases. This imaging is beneficial for health-care professionals to make correct diagnoses, but the added insight of spectroscopy provides even more detail. Spectroscopy offers a means to identify biomolecules within specimens through their characteristic signatures for absorption in the electromagnetic spectrum.

Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers develop a unique quantum mechanical approach to determining metal ductility      (via sciencedaily.com) 

A team of scientists developed a new quantum-mechanics-based approach to predict metal ductility. The team demonstrated its effectiveness on refractory multi-principal-element alloys.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Physics: Optics
Published

Chromium replaces rare and expensive noble metals      (via sciencedaily.com)     Original source 

Expensive noble metals often play a vital role in illuminating screens or converting solar energy into fuels. Now, chemists have succeeded in replacing these rare elements with a significantly cheaper metal. In terms of their properties, the new materials are very similar to those used in the past.

Computer Science: General Physics: General
Published

Scientists discover novel way of reading data in antiferromagnets, unlocking their use as computer memory      (via sciencedaily.com)     Original source 

Scientists have made a significant advance in developing alternative materials for the high-speed memory chips that let computers access information quickly and that bypass the limitations of existing materials. They have discovered a way that allows them to make sense of previously hard-to-read data stored in these alternative materials, known as antiferromagnets.

Physics: Optics
Published

Scientists invent smallest known way to guide light      (via sciencedaily.com) 

Through a series of innovative experiments, scientists found that a sheet of glass crystal just a few atoms thick could trap and carry light. Not only that, but it was surprisingly efficient and could travel relatively long distances -- up to a centimeter, which is very far in the world of light-based computing.

Chemistry: Organic Chemistry Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Arrays of quantum rods could enhance TVs or virtual reality devices      (via sciencedaily.com) 

Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.

Energy: Technology Physics: General
Published

Zentropy and the art of creating new ferroelectric materials      (via sciencedaily.com) 

Systems in the Universe trend toward disorder, with only applied energy keeping the chaos at bay. The concept is called entropy, and examples can be found everywhere: ice melting, campfire burning, water boiling. Zentropy theory, however, adds another level to the mix.

Chemistry: Organic Chemistry Physics: Optics
Published

Researchers 'film' novel catalyst at work      (via sciencedaily.com) 

A novel catalysis scheme enables chemical reactions that were previously virtually impossible. The method is also environmentally friendly and does not require rare and precious metals. The researchers recorded the exact course of the catalysis in a kind of high-speed film. They did this using special lasers that can make processes visible that last only fractions of a billionth of a second. The results allow them to further optimize the catalyst.

Physics: General Physics: Quantum Physics
Published

Muon g-2 doubles down with latest measurement, explores uncharted territory in search of new physics      (via sciencedaily.com) 

Scientists working on Fermilab's Muon g-2 experiment released the world's most precise measurement yet of the magnetic moment of the muon, bringing particle physics closer to the ultimate showdown between theory and experiment that may uncover new particles or forces.

Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Making molecules dance to our tune reveals what drives their first movements      (via sciencedaily.com) 

Bringing ultrafast physics to structural biology has revealed the dance of molecular 'coherence' in unprecedented clarity.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Potential application of unwanted electronic noise in semiconductors      (via sciencedaily.com) 

Random telegraph noise (RTN) in semiconductors is typically caused by two-state defects. Two-dimensional (2D) van der Waals (vdW) layered magnetic materials are expected to exhibit large fluctuations due to long-range Coulomb interaction; importantly, which could be controlled by a voltage compared to 3D counterparts having large charge screening. Researchers reported electrically tunable magnetic fluctuations and RTN signal in multilayered vanadium-doped tungsten diselenide (WSe2) by using vertical magnetic tunneling junction devices. They identified bistable magnetic states in the 1/f2 RTNs in noise spectroscopy, which can be further utilized for switching devices via voltage polarity.

Physics: Optics
Published

Technology advance could expand the reach of 3D nanoprinting      (via sciencedaily.com) 

Researchers have developed an easy-to-build, low-cost 3D nanoprinting system that can create arbitrary 3D structures with extremely fine features. The new 3D nanoprinting technique is precise enough to print metamaterials as well as a variety of optical devices and components such as microlenses, micro-optical devices and metamaterials.

Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers use SPAD detector to achieve 3D quantum ghost imaging      (via sciencedaily.com) 

Researchers have reported the first 3D measurements acquired with quantum ghost imaging. The new technique enables 3D imaging on a single photon level, yielding the lowest photon dose possible for any measurement.

Physics: Optics
Published

Uncovering the Auger-Meitner Effect's crucial role in electron energy loss      (via sciencedaily.com)     Original source 

Defects often limit the performance of devices such as light-emitting diodes (LEDs). The mechanisms by which defects annihilate charge carriers are well understood in materials that emit light at red or green wavelengths, but an explanation has been lacking for such loss in shorter-wavelength (blue or ultraviolet) emitters.