Showing 20 articles starting at article 341
< Previous 20 articles Next 20 articles >
Categories: Physics: General, Space: Astrophysics
Published AI for astrophysics: Algorithms help chart the origins of heavy elements



The origin of heavy elements in our universe is theorized to be the result of neutron star collisions, which produce conditions hot and dense enough for free neutrons to merge with atomic nuclei and form new elements in a split-second window of time. Testing this theory and answering other astrophysical questions requires predictions for a vast range of masses of atomic nuclei. Scientists are using machine learning algorithms to successfully model the atomic masses of the entire nuclide chart -- the combination of all possible protons and neutrons that defines elements and their isotopes.
Published Cheers! NASA's Webb finds ethanol, other icy ingredients for worlds



What do margaritas, vinegar, and ant stings have in common? They contain chemical ingredients that NASA's James Webb Space Telescope has identified surrounding two young protostars known as IRAS 2A and IRAS 23385. Although planets are not yet forming around those stars, these and other molecules detected there by Webb represent key ingredients for making potentially habitable worlds.
Published Scientists use novel technique to create new energy-efficient microelectronic device



Researchers have created a new material that uses 'redox gating' to control the movement of electrons in and out of a semiconducting material.
Published Explaining a supernova's 'string of pearls'



Physicists often turn to the Rayleigh-Taylor instability to explain why fluid structures form in plasmas, but that may not be the full story when it comes to the ring of hydrogen clumps around supernova 1987A, research suggests. It looks like the same mechanism that breaks up airplane contrails might be at play in forming the clumps of hydrogen gas that ring the remnant of supernova 1987A.
Published Staying in the loop: How superconductors are helping computers 'remember'



To advance neuromorphic computing, some researchers are looking at analog improvements -- advancing not just software, but hardware too. Research shows a promising new way to store and transmit information using disordered superconducting loops.
Published Satellites for quantum communications



Through steady advances in the development of quantum computers and their ever-improving performance, it will be possible in the future to crack our current encryption processes. To address this challenge, researchers are developing encryption methods that will apply physical laws to prevent the interception of messages. To safeguard communications over long distances, the QUICK space mission will deploy satellites.
Published Scientists reveal the first unconventional superconductor that can be found in mineral form in nature



Scientists have identified the first unconventional superconductor with a chemical composition also found in nature.
Published Spiral wrappers switch nanotubes from conductors to semiconductors and back



By wrapping a carbon nanotube with a ribbon-like polymer, researchers were able to create nanotubes that conduct electricity when struck with low-energy light that our eyes cannot see. In the future, the approach could make it possible to optimize semiconductors for applications ranging from night vision to new forms of computing.
Published Powerful new tool ushers in new era of quantum materials research



Research in quantum materials is paving the way for groundbreaking discoveries and is poised to drive technological advancements that will redefine the landscapes of industries like mining, energy, transportation, and medtech. A technique called time- and angle-resolved photoemission spectroscopy (TR-ARPES) has emerged as a powerful tool, allowing researchers to explore the equilibrium and dynamical properties of quantum materials via light-matter interaction.
Published Giving particle detectors a boost



Researchers have tested the performance of a new device that boosts particle signals.
Published Peering into the tendrils of NGC 604 with NASA's Webb



The formation of stars and the chaotic environments they inhabit is one of the most well-studied, but also mystery-shrouded, areas of cosmic investigation. The intricacies of these processes are now being unveiled like never before by NASA's James Webb Space Telescope.
Published Design rules and synthesis of quantum memory candidates



In the quest to develop quantum computers and networks, there are many components that are fundamentally different than those used today. Like a modern computer, each of these components has different constraints. However, it is currently unclear what materials can be used to construct those components for the transmission and storage of quantum information.
Published Nasa’s Webb, Hubble telescopes affirm universe’s expansion rate, puzzle persists



When you are trying to solve one of the biggest conundrums in cosmology, you should triple check your homework. The puzzle, called the 'Hubble Tension,' is that the current rate of the expansion of the universe is faster than what astronomers expect it to be, based on the universe's initial conditions and our present understanding of the universe's evolution.
Published Preventing magnet meltdowns before they can start



High-temperature superconductor magnets have the potential to lower the costs of operating particle accelerators and enable powerful new technologies like fusion reactors. But quenches -- the sudden, destructive events wherein a part of the material loses superconductivity -- are a major barrier to their deployment. Scientists have developed an approach to prevent quenches altogether, rather than simply trying to manage them after they occur.
Published Combined microscopy technique catches light-driven polymers in the act



Researchers have used tip-scan high-speed atomic force microscopy combined with an optical microscope to observe light-induced deformation of azo-polymer films. The process could be followed in real time, and the film patterns were found to change with the polarization of the light source. The observations will contribute to the use of azo-polymers in applications such as optical data storage, and the approach is expected to be useful across materials science and physical chemistry.
Published Pushing the boundary on ultralow frequency gravitational waves



A team of physicists has developed a method to detect gravity waves with such low frequencies that they could unlock the secrets behind the early phases of mergers between supermassive black holes, the heaviest objects in the universe.
Published Baby quasars: Growing supermassive black holes



The James Webb Space Telescope makes one of the most unexpected findings within its first year of service: A high number of faint little red dots in the distant Universe could change the way we understand the genesis of supermassive black holes.
Published Researchers develop new machine learning method for modeling of chemical reactions



Researchers have used machine learning to create a model that simulates reactive processes in organic materials and conditions.
Published Making quantum bits fly



Physicists are developing a method that could enable the stable exchange of information in quantum computers. In the leading role: photons that make quantum bits 'fly'.
Published Finding new physics in debris from colliding neutron stars



Neutron star mergers are a treasure trove for new physics signals, with implications for determining the true nature of dark matter, according to physicists.