Showing 20 articles starting at article 361
< Previous 20 articles Next 20 articles >
Categories: Physics: General, Space: Astrophysics
Published Astronomers spot oldest 'dead' galaxy yet observed



A galaxy that suddenly stopped forming new stars more than 13 billion years ago has been observed by astronomers. Using the James Webb Space Telescope, astronomers have spotted a 'dead' galaxy when the universe was just 700 million years old, the oldest such galaxy ever observed.
Published Discovery tests theory on cooling of white dwarf stars



Open any astronomy textbook to the section on white dwarf stars and you'll likely learn that they are 'dead stars' that continuously cool down over time. Astronomers are challenging this theory after discovering a population of white dwarf stars that stopped cooling for more than eight billion years.
Published Using light to precisely control single-molecule devices



Researchers flip the switch at the nanoscale by applying light to induce bonding for single-molecule device switching.
Published New method measures the 3D position of individual atoms



Since more than a decade it has been possible for physicists to accurately measure the location of individual atoms to a precision of smaller than one thousandth of a millimeter using a special type of microscope. However, this method has so far only provided the x and y coordinates. Information on the vertical position of the atom -- i.e., the distance between the atom and the microscope objective -- is lacking. A new method has now been developed that can determine all three spatial coordinates of an atom with one single image.
Published Shortcut to Success: Toward fast and robust quantum control through accelerating adiabatic passage



Researchers achieved the acceleration of adiabatic evolution of a single spin qubit in gate-defined quantum dots. After the pulse optimization to suppress quasistatic noises, the spin flip fidelity can be as high as 97.5% in GaAs quantum dots. This work may be useful to achieve fast and high-fidelity quantum computing.
Published Groundbreaking survey reveals secrets of planet birth around dozens of stars



A team of astronomers has shed new light on the fascinating and complex process of planet formation. The research brings together observations of more than 80 young stars that might have planets forming around them, providing astronomers with a wealth of data and unique insights into how planets arise in different regions of our galaxy.
Published One way to improve a fusion reaction: Use weaknesses as strengths



Scientists are embracing imperfection, using less-than-ideal magnetic fields to make the plasma more manageable.
Published What makes black holes grow and new stars form? Machine learning helps solve the mystery



It takes more than a galaxy merger to make a black hole grow and new stars form: machine learning shows cold gas is needed too to initiate rapid growth -- new research finds.
Published Webb unlocks secrets of one of the most distant galaxies ever seen



Looking deeply into space and time, astronomers have studied the exceptionally luminous galaxy GN-z11, which existed when our 13.8 billion-year-old universe was only about 430 million years old.
Published Spontaneous curvature the key to shape-shifting nanomaterials



Inspired by nature, nanotechnology researchers have identified 'spontaneous curvature' as the key factor determining how ultra-thin, artificial materials can transform into useful tubes, twists and helices.
Published Network of quantum sensors boosts precision



Quantum sensor technology promises even more precise measurements of physical quantities. A team has now compared the signals of up to 91 quantum sensors with each other and thus successfully eliminated the noise caused by interactions with the environment. Correlation spectroscopy can be used to increase the precision of sensor networks.
Published Tests show high-temperature superconducting magnets are ready for fusion



A comprehensive study of high-temperature superconducting magnets confirms they meet requirements for an economic, compact fusion power plant.
Published AI-enabled atomic robotic probe to advance quantum material manufacturing



Scientists have pioneered a new methodology of fabricating carbon-based quantum materials at the atomic scale by integrating scanning probe microscopy techniques and deep neural networks. This breakthrough highlights the potential of implementing artificial intelligence at the sub-angstrom scale for enhanced control over atomic manufacturing, benefiting both fundamental research and future applications.
Published New insights on how galaxies are formed



Astronomers can use supercomputers to simulate the formation of galaxies from the Big Bang 13.8 billion years ago to the present day. But there are a number of sources of error. An international research team has spent a hundred million computer hours over eight years trying to correct these.
Published Scientists make nanoparticles dance to unravel quantum limits



The question of where the boundary between classical and quantum physics lies is one of the longest-standing pursuits of modern scientific research and in new research, scientists demonstrate a novel platform that could help us find an answer.
Published Umbrella for atoms: The first protective layer for 2D quantum materials



As silicon-based computer chips approach their physical limitations in the quest for faster and smaller designs, the search for alternative materials that remain functional at atomic scales is one of science's biggest challenges. In a groundbreaking development, researchers have engineered a protective film that shields quantum semiconductor layers just one atom thick from environmental influences without compromising their revolutionary quantum properties. This puts the application of these delicate atomic layers in ultrathin electronic components within realistic reach.
Published Ultraviolet radiation from massive stars shapes planetary systems



Up to a certain point, very luminous stars can have a positive effect on the formation of planets, but from that point on the radiation they emit can cause the material in protoplanetary discs to disperse.
Published Astronomers measure heaviest black hole pair ever found



Using archival data from the Gemini North telescope, a team of astronomers has measured the heaviest pair of supermassive black holes ever found. The merging of two supermassive black holes is a phenomenon that has long been predicted, though never observed. This massive pair gives clues as to why such an event seems so unlikely in the Universe.
Published Better neutron mirrors can reveal the inner secrets of matter



Improved neutron mirrors can increase the efficiency of material analysis in neutron sources such as the ESS. The improved mirror has been developed by coating a silicon plate with extremely thin layers of iron and silicon mixed with boron carbide.
Published When the music changes, so does the dance: Controlling cooperative electronic states in Kagome metals



Playing a different sound track is, physically speaking, only a minute change of the vibration spectrum, yet its impact on a dance floor is dramatic. People long for this tiny trigger, and as a salsa changes to a tango completely different collective patterns emerge. For such a tiny stimulus to have an effect, the crowd needs to know more than just one dance. Electrons in metals tend to show only one behavior at zero temperature, when all kinetic energy is quenched.