Showing 20 articles starting at article 501
< Previous 20 articles Next 20 articles >
Categories: Physics: General, Space: Astrophysics
Published Generating stable qubits at room temperature



Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.
Published First direct imaging of small noble gas clusters at room temperature



Scientists have succeeded in the stabilization and direct imaging of small clusters of noble gas atoms at room temperature. This achievement opens up exciting possibilities for fundamental research in condensed matter physics and applications in quantum information technology. The key to this breakthrough was the confinement of noble gas atoms between two layers of graphene.
Published NASA's Webb discovers dusty 'cat's tail' in Beta Pictoris System



Beta Pictoris, a young planetary system located just 63 light-years away, continues to intrigue scientists even after decades of in-depth study. It possesses the first dust disk imaged around another star -- a disk of debris produced by collisions between asteroids, comets, and planetesimals. Observations from NASA's Hubble Space Telescope revealed a second debris disk in this system, inclined with respect to the outer disk, which was seen first. Now, a team of astronomers using NASA's James Webb Space Telescope to image the Beta Pictoris system (Beta Pic) has discovered a new, previously unseen structure.
Published Epic of a molecular ion: With eyes of electrons



Researchers have achieved real-time capture of the ionization process and subsequent structural changes in gas-phase molecules through an enhanced mega-electronvolt ultrafast electron diffraction (MeV-UED) technique, enabling observation of faster and finer movements of ions.
Published Observing macroscopic quantum effects in the dark



Be fast, avoid light, and roll through a curvy ramp: This is the recipe for a pioneering experiment proposed by theoretical physicists. An object evolving in a potential created through electrostatic or magnetic forces is expected to rapidly and reliably generate a macroscopic quantum superposition state.
Published NASA's Webb finds signs of possible aurorae on isolated brown dwarf



Astronomers have found a brown dwarf (an object more massive than Jupiter but smaller than a star) with infrared emission from methane, likely due to energy in its upper atmosphere. This is an unexpected discovery because the brown dwarf, W1935, is cold and lacks a host star; therefore, there is no obvious source for the upper atmosphere energy. The team speculates that the methane emission may be due to processes generating aurorae.
Published How black silicon, a prized material used in solar cells, gets its dark, rough edge



Researchers have developed a new theoretical model explaining one way to make black silicon. The new etching model precisely explains how fluorine gas breaks certain bonds in the silicon more often than others, depending on the orientation of the bond at the surface. Black silicon is an important material used in solar cells, light sensors, antibacterial surfaces and many other applications.
Published 'Blob-like' home of farthest-known fast radio burst is collection of seven galaxies



In summer 2022, astronomers detected the most powerful and most distant fast radio burst (FRB) ever observed. Now, astronomers have pinpointed the extraordinary object's birthplace -- and it's rather curious, indeed. Using images from NASA's Hubble Space Telescope, the researchers traced the FRB back to not one galaxy but a group of at least seven galaxies.
Published Researchers demonstrate that quantum entanglement and topology are inextricably linked



Researchers have demonstrated the remarkable ability to perturb pairs of spatially separated yet interconnected quantum entangled particles without altering their shared properties.
Published New study uses machine learning to bridge the reality gap in quantum devices



A study has used the power of machine learning to overcome a key challenge affecting quantum devices. For the first time, the findings reveal a way to close the 'reality gap': the difference between predicted and observed behavior from quantum devices.
Published Final supernova results from Dark Energy Survey offer unique insights into the expansion of the universe



In the culmination of a decade's worth of effort, scientists analyzed an unprecedented sample of more than 1,500 supernovae classified using machine learning. They placed the strongest constraints on the expansion of the universe ever obtained with the DES supernova survey. While consistent with the current standard cosmological model, the results do not rule out a more complex theory that the density of dark energy in the universe could have varied over time.
Published Three iron rings in a planet-forming disk



Astronomers have detected a three-ringed structure in the nursery of planets in the inner planet-forming disk of a young star. This configuration suggests two Jupiter-mass planets are forming in the gaps between the rings. The detailed analysis is consistent with abundant solid iron grains complementing the dust composition. As a result, the disk likely harbors metals and minerals akin to those in the Solar System's terrestrial planets. It offers a glimpse into conditions resembling the early Solar System over four billion years ago during the formation of rocky planets such as Mercury, Venus, and Earth.
Published Space oddity: Uncovering the origin of the universe's rare radio circles



Astronomers believe they may have found the origin of the universe's giant odd radio circles: they are shells formed by outflowing galactic winds, possibly from massive exploding stars known as supernovae.
Published Using berry phase monopole engineering for high-temperature spintronic devices



Spin-orbit torque (SOT), an important phenomenon for developing ultrafast and low-power spintronic devices, can be enhanced through Berry phase monopole engineering at high temperatures. In a new study, the temperature dependence of the intrinsic spin Hall effect of TaSi2 was investigated. The results suggest that Berry phase monopole engineering is an effective strategy for achieving high-temperature SOT spintronic devices.
Published Functional semiconductor made from graphene



Researchers have created the first functional semiconductor made from graphene, a single sheet of carbon atoms held together by the strongest bonds known. The breakthrough throws open the door to a new way of doing electronics.
Published Magnetic fields in the cosmos: Dark matter could help us discover their origin



We don't know how magnetic fields in the cosmos formed. Now a new theoretical research tells how the invisible part of our universe could help us find out, suggesting a primordial genesis, even within a second of the Big Bang.
Published Researchers boost signal amplification in perovskite nanosheets



Perovskite nanosheets show distinctive characteristics with significant applications in science and technology. In a recent study, researchers achieved enhanced signal amplification in CsPbBr3 perovskite nanosheets with a unique waveguide pattern, which enhanced both gain and thermal stability. These advancements carry wide-ranging implications for laser, sensor, and solar cell applications, and can potentially influence areas like environmental monitoring, industrial processes, and healthcare.
Published Better microelectronics from coal



Coal is an abundant resource in the United States that has, unfortunately, contributed to climate change through its use as a fossil fuel. As the country transitions to other means of energy production, it will be important to consider and reevaluate coal's economic role. Coal may actually play a vital role in next-generation electronic devices.
Published Non-toxic quantum dots pave the way towards CMOS shortwave infrared image sensors for consumer electronics



Researchers have fabricated a new high-performance shortwave infrared (SWIR) image sensor based on non-toxic colloidal quantum dots. They report on a new method for synthesizing functional high-quality non-toxic colloidal quantum dots integrable with complementary metal-oxide-semiconductor (CMOS) technology.
Published Molecules exhibit non-reciprocal interactions without external forces



Researchers have discovered that molecules experience non-reciprocal interactions without external forces. Fundamental forces such as gravity and electromagnetism are reciprocal, where two objects are attracted to each other or are repelled by each other. In our everyday experience, however, interactions don t seem to follow this reciprocal law.