Showing 20 articles starting at article 461

< Previous 20 articles        Next 20 articles >

Categories: Geoscience: Volcanoes, Physics: General

Return to the site home page

Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Physics: General
Published

Nanofluidic device generates power with saltwater      (via sciencedaily.com)     Original source 

There is a largely untapped energy source along the world's coastlines: the difference in salinity between seawater and freshwater. A new nanodevice can harness this difference to generate power.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Physics: General
Published

One-atom-thick ribbons could improve batteries, solar cells and sensors      (via sciencedaily.com) 

Researchers created nanoribbons made of phosphorus and tiny amounts of arsenic, which they found were able to conduct electricity at temperatures above -140 degrees Celsius, while retaining the highly useful properties of the phosphorus-only ribbons.

Engineering: Nanotechnology Physics: General
Published

Stabilizing precipitate growth at grain boundaries in alloys      (via sciencedaily.com) 

Materials are often considered to be one phase, but many engineering materials contain two or more phases, improving their properties and performance. These two-phase materials have inclusions, called precipitates, embedded in the microstructure. Alloys, a combination of two or more types of metals, are used in many applications, like turbines for jet engines and light-weight alloys for automotive applications, because they have very good mechanical properties due to those embedded precipitates. The average precipitate size, however, tends to increase over time-in a process called coarsening-which results in a degradation of performance for microstructures with nanoscale precipitates.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General
Published

Imaging the smallest atoms provides insights into an enzyme's unusual biochemistry      (via sciencedaily.com) 

A team has used neutron crystallography to image all of the atoms in a radical intermediate of a copper amine oxidase enzyme. They disclosed previously unknown details, such as precise conformational changes, that help to explain the enzyme's biochemistry. This work might help researchers engineer enzymes that facilitate unusual chemistry or are highly efficient at room temperature that are useful in chemical industry.

Chemistry: Thermodynamics Energy: Technology Physics: General Physics: Optics
Published

Electrons take flight at the nanoscale      (via sciencedaily.com) 

A study showing how electrons flow around sharp bends, such as those found in integrated circuits, has the potential to improve how these circuits, commonly used in electronic and optoelectronic devices, are designed.

Chemistry: Biochemistry Mathematics: General Mathematics: Modeling Physics: General
Published

Machine learning models can produce reliable results even with limited training data      (via sciencedaily.com) 

Researchers have determined how to build reliable machine learning models that can understand complex equations in real-world situations while using far less training data than is normally expected.

Chemistry: General Chemistry: Inorganic Chemistry Computer Science: General Energy: Technology Physics: General
Published

Engineers grow full wafers of high-performing 2D semiconductor that integrates with state-of-the-art chips      (via sciencedaily.com) 

Researchers have grown a high-performing 2D semiconductor to a full-size, industrial-scale wafer. In addition, the semiconductor material, indium selenide (InSe), can be deposited at temperatures low enough to integrate with a silicon chip.

Chemistry: Biochemistry Chemistry: General Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Geoscience: Volcanoes
Published

Crucial third clue to finding new diamond deposits      (via sciencedaily.com) 

Researchers studying diamond-rich rocks from Western Australia's Argyle volcano have identified the missing third key ingredient needed to bring valuable pink diamonds to the Earth's surface where they can be mined, which could greatly help in the global hunt for new deposits.

Energy: Alternative Fuels Environmental: General Environmental: Water Physics: General Physics: Optics
Published

Step change in upconversion the key to clean water, green energy and futuristic medicine      (via sciencedaily.com) 

Achieving photochemical upconversion in a solid state is a step closer to reality, thanks to a new technique that could unlock vital innovations in renewable energy, water purification and advanced healthcare.

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

New clues to the nature of elusive dark matter      (via sciencedaily.com) 

A team of international researchers has uncovered further clues in the quest for insights into the nature of dark matter. The key to understanding this mystery could lie with the dark photon, a theoretical massive particle that may serve as a portal between the dark sector of particles and regular matter.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Space: Astrophysics Space: Cosmology Space: Exploration Space: General
Published

Carbon atoms coming together in space      (via sciencedaily.com)     Original source 

Lab-based studies reveal how carbon atoms diffuse on the surface of interstellar ice grains to form complex organic compounds, crucial to reveal the chemical complexity in the universe.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers detail how disorder alters quantum spin liquids, forming a new phase of matter      (via sciencedaily.com) 

Physicists begin to shed light on one of the most important questions regarding quantum spin liquids, and they do so by introducing a new phase of matter.

Physics: General Physics: Optics
Published

A new way to create germ-killing light      (via sciencedaily.com) 

A research team has created an aluminum-nitride device that can convert visible light into deep-ultraviolet light through the process of second harmonic generation. This work can lead to the development of practical devices that can sterilize surfaces with ultraviolet radiation while using less energy.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers make a significant step towards reliably processing quantum information      (via sciencedaily.com) 

Using laser light, researchers have developed the most robust method currently known to control individual qubits made of the chemical element barium. The ability to reliably control a qubit is an important achievement for realizing future functional quantum computers.

Physics: General Physics: Optics Physics: Quantum Computing
Published

Valleytronics: Innovative way to store and process information up to room temperature      (via sciencedaily.com) 

Researchers have found a way to maintain valley polarization at room temperature using novel materials and techniques.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning contributes to better quantum error correction      (via sciencedaily.com) 

Researchers have used machine learning to perform error correction for quantum computers -- a crucial step for making these devices practical -- using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Atomic-scale spin-optical laser: New horizon of optoelectronic devices      (via sciencedaily.com) 

Researchers have pushed the limits of the possible in the field of atomic-scale spin-optics, creating a spin-optical laser from monolayer-integrated spin-valley microcavities without requiring magnetic fields or cryogenic temperatures.