Showing 20 articles starting at article 521

< Previous 20 articles        Next 20 articles >

Categories: Geoscience: Volcanoes, Physics: General

Return to the site home page

Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Making molecules dance to our tune reveals what drives their first movements      (via sciencedaily.com) 

Bringing ultrafast physics to structural biology has revealed the dance of molecular 'coherence' in unprecedented clarity.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Potential application of unwanted electronic noise in semiconductors      (via sciencedaily.com) 

Random telegraph noise (RTN) in semiconductors is typically caused by two-state defects. Two-dimensional (2D) van der Waals (vdW) layered magnetic materials are expected to exhibit large fluctuations due to long-range Coulomb interaction; importantly, which could be controlled by a voltage compared to 3D counterparts having large charge screening. Researchers reported electrically tunable magnetic fluctuations and RTN signal in multilayered vanadium-doped tungsten diselenide (WSe2) by using vertical magnetic tunneling junction devices. They identified bistable magnetic states in the 1/f2 RTNs in noise spectroscopy, which can be further utilized for switching devices via voltage polarity.

Geoscience: Geology Geoscience: Volcanoes
Published

Carbon dioxide -- not water -- triggers explosive basaltic volcanoes      (via sciencedaily.com)     Original source 

Geoscientists have long thought that water -- along with shallow magma stored in Earth's crust -- drives volcanoes to erupt. Now, thanks to newly developed research tools, scientists have learned that gaseous carbon dioxide can trigger explosive eruptions.

Geoscience: Geology Geoscience: Volcanoes
Published

Research reveals Hawai'i's undersea volcano, Kama'ehu, erupted five times in past 150 years      (via sciencedaily.com)     Original source 

Kama?ehuakanaloa (formerly L??ihi Seamount), a submarine Hawaiian volcano located about 20 miles off the south coast of the Big Island of Hawai'i, has erupted at least five times in the last 150 years, according to new research led by Earth scientists at the University of Hawai'i at M?noa.

Geoscience: Volcanoes
Published

Lasering lava to forecast volcanic eruptions      (via sciencedaily.com)     Original source 

Researchers have optimized a new technique to help forecast how volcanoes will behave, which could save lives and property around the world.

Geoscience: Earthquakes Geoscience: Geology Geoscience: Volcanoes Paleontology: Climate
Published

Research reveals sources of CO2 from Aleutian-Alaska Arc volcanoes      (via sciencedaily.com)     Original source 

Scientists have wondered what happens to the organic and inorganic carbon that Earth's Pacific Plate carries with it as it slides into the planet's interior along the volcano-studded Ring of Fire. A new study suggests a notable amount of such subducted carbon returns to the atmosphere rather than traveling deep into Earth's mantle.

Geoscience: Geology Geoscience: Volcanoes Paleontology: Climate
Published

Climate change will increase impacts of volcanic eruptions      (via sciencedaily.com)     Original source 

Volcanic disasters have been studied since Pompeii was buried in 79 A.D., leading the public to believe that scientists already know why, where, when and how long volcanoes will erupt. But a volcanologist said these fundamental questions remain a mystery.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General
Published

Don't wait, desalinate: A new approach to water purification      (via sciencedaily.com)     Original source 

A water purification system separates out salt and other unnecessary particles with an electrified version of dialysis. Successfully applied to wastewater with planned expansion into rivers and seas, the method saves money and saps 90% less energy than its counterparts.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Toggle switch' can help quantum computers cut through the noise      (via sciencedaily.com)     Original source 

What good is a powerful computer if you can't read its output? Or readily reprogram it to do different jobs? People who design quantum computers face these challenges, and a new device may make them easier to solve.

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nanophotonics: Coupling light and matter      (via sciencedaily.com)     Original source 

Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).

Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Volcanoes
Published

Effect of volcanic eruptions significantly underestimated in climate projections      (via sciencedaily.com)     Original source 

Researchers have found that the cooling effect that volcanic eruptions have on Earth's surface temperature is likely underestimated by a factor of two, and potentially as much as a factor of four, in standard climate projections.

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Einstein and Euler put to the test at the edge of the Universe      (via sciencedaily.com)     Original source 

The cosmos is a unique laboratory for testing the laws of physics, in particular those of Euler and Einstein. Euler described the movements of celestial objects, while Einstein described the way in which celestial objects distort the Universe. Since the discovery of dark matter and the acceleration of the Universe's expansion, the validity of their equations has been put to the test: are they capable of explaining these mysterious phenomena? A team has developed the first method to find out. It considers a never-before-used measure: time distortion.

Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Combining twistronics with spintronics could be the next giant leap in quantum electronics      (via sciencedaily.com)     Original source 

Quantum researchers twist double bilayers of an antiferromagnet to demonstrate tunable moiré magnetism.

Physics: General Physics: Optics Physics: Quantum Physics Space: Exploration Space: General
Published

Groundwork for future ultra-precise timing links to geosynchronous satellites      (via sciencedaily.com)     Original source 

Scientists have demonstrated a capability long sought by physicists: transmitting extremely precise time signals through the air between far-flung locations at powers that are compatible with future space-based missions. The results could enable time transfer from the ground to satellites in geosynchronous orbit with femtosecond precision -- 10,000 times better than the existing state-of-the-art satellite approaches. It also would allow for successful synchronization using the bare minimum timing signal strength, which would make the system highly robust in the face of atmospheric disturbances.

Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Geology Geoscience: Severe Weather Geoscience: Volcanoes
Published

A Tongan volcano plume produced the most intense lightning rates ever detected      (via sciencedaily.com)     Original source 

New research showed that the plume emitted by the Hunga Volcano eruption in 2022 created the highest lightning flash rates ever recorded on Earth, more than any storm ever documented.

Engineering: Graphene Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics
Published

Terahertz-to-visible light conversion for future telecommunications      (via sciencedaily.com)     Original source 

A study demonstrates that graphene-based materials can be used to efficiently convert high-frequency signals into visible light, and that this mechanism is ultrafast and tunable. These outcomes open the path to exciting applications in near-future information and communication technologies.

Chemistry: Inorganic Chemistry Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

For experimental physicists, quantum frustration leads to fundamental discovery      (via sciencedaily.com)     Original source 

A team of physicists recently announced that they have discovered a new phase of matter. Called the 'chiral bose-liquid state,' the discovery opens a new path in the age-old effort to understand the nature of the physical world.

Computer Science: General Engineering: Robotics Research Physics: General Physics: Quantum Physics
Published

Metamaterials with built-in frustration have mechanical memory      (via sciencedaily.com)     Original source 

Researchers have discovered how to design materials that necessarily have a point or line where the material doesn't deform under stress, and that even remember how they have been poked or squeezed in the past. These results could be used in robotics and mechanical computers, while similar design principles could be used in quantum computers.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New technique in error-prone quantum computing makes classical computers sweat      (via sciencedaily.com)     Original source 

Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.