Showing 20 articles starting at article 621
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Volcanoes, Physics: General
Published Study re-evaluates hazards and climate impacts of massive underwater volcanic eruptions



Material left on the seafloor by bronze-age underwater volcanic eruptions is helping researchers better understand the size, hazards and climate impact of their parent eruptions, according to new research.
Published Better understanding the physics of our universe



Researchers from around the world have sought to answer important questions about the most basic laws of physics that govern our universe. Their experiment, the Majorana Demonstrator, has helped to push the horizons on research concerning one of the fundamental building blocks of the universe: neutrinos.
Published Merons and antimerons



Sliding and twisting of van der Waals layers can produce fascinating physical phenomena. Scientists show that moiré polar domains in bilayer hBN give rise to a topologically non-trivial winding of the polarization field, forming networks of merons and antimerons.
Published How to see the invisible: Using the dark matter distribution to test our cosmological model



Astrophysicists have measured a value for the 'clumpiness' of the universe's dark matter (known to cosmologists as 'S8') of 0.776, which does not align with the value derived from the Cosmic Microwave Background, which dates back to the universe's origins. This has intriguing implications for the standard cosmological model.
Published New atomic-scale understanding of catalysis could unlock massive energy savings



In an advance they consider a breakthrough in computational chemistry research, chemical engineers have developed a model of how catalytic reactions work at the atomic scale. This understanding could allow engineers and chemists to develop more efficient catalysts and tune industrial processes -- potentially with enormous energy savings, given that 90% of the products we encounter in our lives are produced, at least partially, via catalysis.
Published Two-dimensional nanoparticles with great potential



A research team has discovered how catalysts and many other nanoplatelets can be produced in an environmentally friendly way from readily available materials and in sufficient quantities.
Published Discovery of ferroelectricity in an elementary substance



Researchers have discovered a new single-element ferroelectric material that alters the current understanding of conventional ferroelectric materials and has future applications in data storage devices.
Published Random matrix theory approaches the mystery of the neutrino mass



Scientists analyzed each element of the neutrino mass matrix belonging to leptons and showed theoretically that the intergenerational mixing of lepton flavors is large. Furthermore, by using the mathematics of random matrix theory, the research team was able to demonstrate, as much as is possible at this stage, why the calculation of the squared difference of the neutrino masses are in close agreement with the experimental results in the case of the seesaw model with the random Dirac and Majorana matrices. The results of this research are expected to contribute to the further development of particle theory research, which largely remains a mystery.
Published A new type of photonic time crystal gives light a boost



Researchers have developed a way to create photonic time crystals and shown that these bizarre, artificial materials amplify the light that shines on them. These findings could lead to more efficient and robust wireless communications and significantly improved lasers.
Published Looking at magnets in the right light



Unlocking the secrets of magnetic materials requires the right illumination. Magnetic x-ray circular dichroism makes it possible to decode magnetic order in nanostructures and to assign it to different layers or chemical elements. Researchers have succeeded in implementing this unique measurement technique in the soft-x-ray range in a laser laboratory. With this development, many technologically relevant questions can now be investigated outside of scientific large-scale facilities for the first time.
Published DMI allows magnon-magnon coupling in hybrid perovskites



An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii--Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information.
Published Absolute zero in the quantum computer



Absolute zero cannot be reached -- unless you have an infinite amount of energy or an infinite amount of time. Scientists in Vienna (Austria) studying the connection between thermodynamics and quantum physics have now found out that there is a third option: Infinite complexity. It turns out that reaching absolute zero is in a way equivalent to perfectly erasing information in a quantum computer, for which an infinetly complex quantum computer would be required.
Published Mathematical model provides bolt of understanding for lightning-produced X-rays


In the early 2000s, scientists observed lightning discharge producing X-rays comprising high energy photons -- the same type used for medical imaging. Researchers could recreate this phenomenon in the lab, but they could not fully explain how and why lightning produced X-rays. Now, two decades later, a team has discovered a new physical mechanism explaining naturally occurring X-rays associated with lightning activity in the Earth's atmosphere.
Published Charming experiment finds gluon mass in the proton



Nuclear physicists may have finally pinpointed where in the proton a large fraction of its mass resides. A recent experiment has revealed the radius of the proton's mass that is generated by the strong force as it glues together the proton's building block quarks.
Published Can a solid be a superfluid? Engineering a novel supersolid state from layered 2D materials



Physicists predict that layered electronic 2D semiconductors can host a curious quantum phase of matter called the supersolid. This counterintuitive quantum material simultaneously forms a rigid crystal, and yet at the same time allows particles to flow without friction, with all the particles belong to the same single quantum state.
Published Cooking up plasmas with microwaves



Scientists have created plasmas with fusion-suitable densities, using microwave power with low frequency. The research team has identified three important steps in the plasma production: lightning-like gas breakdown, preliminary plasma production, and steady-state plasma. Blasting the microwaves without alignment of Heliotron J's magnetic field created a discharge that ripped electrons from their atoms and produced an especially dense plasma.
Published Highly charged ions melt nano gold nuggets



Shooting ions is very different from shooting a gun: By firing highly charged ions onto tiny gold structures, these structures can be modified in technologically interesting ways. Surprisingly, the key is not the force of impact, but the electric charge of the projectiles.
Published Nanophysics: The right twist


Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.
Published New type of entanglement lets scientists 'see' inside nuclei


Nuclear physicists have found a new way to see inside nuclei by tracking interactions between particles of light and gluons. The method relies on harnessing a new type of quantum interference between two dissimilar particles. Tracking how these entangled particles emerge from the interactions lets scientists map out the arrangement of gluons. This approach is unusual for making use of entanglement between dissimilar particles -- something rare in quantum studies.
Published Photosynthesis: Varying roads lead to the reaction center


Chemists use high-precision quantum chemistry to study key elements of super-efficient energy transfer in an important element of photosynthesis.