Showing 20 articles starting at article 621

< Previous 20 articles        Next 20 articles >

Categories: Geoscience: Volcanoes, Physics: General

Return to the site home page

Archaeology: General Environmental: Water Geoscience: Earth Science Geoscience: Geology Geoscience: Oceanography Geoscience: Volcanoes Paleontology: Climate
Published

Study re-evaluates hazards and climate impacts of massive underwater volcanic eruptions      (via sciencedaily.com)     Original source 

Material left on the seafloor by bronze-age underwater volcanic eruptions is helping researchers better understand the size, hazards and climate impact of their parent eruptions, according to new research.

Physics: General Physics: Quantum Physics
Published

Better understanding the physics of our universe      (via sciencedaily.com)     Original source 

Researchers from around the world have sought to answer important questions about the most basic laws of physics that govern our universe. Their experiment, the Majorana Demonstrator, has helped to push the horizons on research concerning one of the fundamental building blocks of the universe: neutrinos.

Physics: General
Published

Merons and antimerons      (via sciencedaily.com)     Original source 

Sliding and twisting of van der Waals layers can produce fascinating physical phenomena. Scientists show that moiré polar domains in bilayer hBN give rise to a topologically non-trivial winding of the polarization field, forming networks of merons and antimerons.

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

How to see the invisible: Using the dark matter distribution to test our cosmological model      (via sciencedaily.com)     Original source 

Astrophysicists have measured a value for the 'clumpiness' of the universe's dark matter (known to cosmologists as 'S8') of 0.776, which does not align with the value derived from the Cosmic Microwave Background, which dates back to the universe's origins. This has intriguing implications for the standard cosmological model.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Mathematics: Modeling Physics: General
Published

New atomic-scale understanding of catalysis could unlock massive energy savings      (via sciencedaily.com)     Original source 

In an advance they consider a breakthrough in computational chemistry research, chemical engineers have developed a model of how catalytic reactions work at the atomic scale. This understanding could allow engineers and chemists to develop more efficient catalysts and tune industrial processes -- potentially with enormous energy savings, given that 90% of the products we encounter in our lives are produced, at least partially, via catalysis.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Two-dimensional nanoparticles with great potential      (via sciencedaily.com)     Original source 

A research team has discovered how catalysts and many other nanoplatelets can be produced in an environmentally friendly way from readily available materials and in sufficient quantities.

Chemistry: Inorganic Chemistry Energy: Technology Engineering: Graphene Physics: General
Published

Discovery of ferroelectricity in an elementary substance      (via sciencedaily.com)     Original source 

Researchers have discovered a new single-element ferroelectric material that alters the current understanding of conventional ferroelectric materials and has future applications in data storage devices.

Mathematics: Modeling Physics: General Physics: Quantum Physics
Published

Random matrix theory approaches the mystery of the neutrino mass      (via sciencedaily.com)     Original source 

Scientists analyzed each element of the neutrino mass matrix belonging to leptons and showed theoretically that the intergenerational mixing of lepton flavors is large. Furthermore, by using the mathematics of random matrix theory, the research team was able to demonstrate, as much as is possible at this stage, why the calculation of the squared difference of the neutrino masses are in close agreement with the experimental results in the case of the seesaw model with the random Dirac and Majorana matrices. The results of this research are expected to contribute to the further development of particle theory research, which largely remains a mystery.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

A new type of photonic time crystal gives light a boost      (via sciencedaily.com)     Original source 

Researchers have developed a way to create photonic time crystals and shown that these bizarre, artificial materials amplify the light that shines on them. These findings could lead to more efficient and robust wireless communications and significantly improved lasers.

Physics: General Physics: Optics
Published

Looking at magnets in the right light      (via sciencedaily.com)     Original source 

Unlocking the secrets of magnetic materials requires the right illumination. Magnetic x-ray circular dichroism makes it possible to decode magnetic order in nanostructures and to assign it to different layers or chemical elements. Researchers have succeeded in implementing this unique measurement technique in the soft-x-ray range in a laser laboratory. With this development, many technologically relevant questions can now be investigated outside of scientific large-scale facilities for the first time.

Chemistry: General Chemistry: Organic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

DMI allows magnon-magnon coupling in hybrid perovskites      (via sciencedaily.com)     Original source 

An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii--Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Absolute zero in the quantum computer      (via sciencedaily.com)     Original source 

Absolute zero cannot be reached -- unless you have an infinite amount of energy or an infinite amount of time. Scientists in Vienna (Austria) studying the connection between thermodynamics and quantum physics have now found out that there is a third option: Infinite complexity. It turns out that reaching absolute zero is in a way equivalent to perfectly erasing information in a quantum computer, for which an infinetly complex quantum computer would be required.

Energy: Technology Environmental: General Geoscience: Environmental Issues Physics: General
Published

Mathematical model provides bolt of understanding for lightning-produced X-rays      (via sciencedaily.com) 

In the early 2000s, scientists observed lightning discharge producing X-rays comprising high energy photons -- the same type used for medical imaging. Researchers could recreate this phenomenon in the lab, but they could not fully explain how and why lightning produced X-rays. Now, two decades later, a team has discovered a new physical mechanism explaining naturally occurring X-rays associated with lightning activity in the Earth's atmosphere.

Chemistry: Biochemistry Physics: General Physics: Quantum Physics
Published

Charming experiment finds gluon mass in the proton      (via sciencedaily.com)     Original source 

Nuclear physicists may have finally pinpointed where in the proton a large fraction of its mass resides. A recent experiment has revealed the radius of the proton's mass that is generated by the strong force as it glues together the proton's building block quarks.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Can a solid be a superfluid? Engineering a novel supersolid state from layered 2D materials      (via sciencedaily.com)     Original source 

Physicists predict that layered electronic 2D semiconductors can host a curious quantum phase of matter called the supersolid. This counterintuitive quantum material simultaneously forms a rigid crystal, and yet at the same time allows particles to flow without friction, with all the particles belong to the same single quantum state.

Energy: Nuclear Physics: General
Published

Cooking up plasmas with microwaves      (via sciencedaily.com)     Original source 

Scientists have created plasmas with fusion-suitable densities, using microwave power with low frequency. The research team has identified three important steps in the plasma production: lightning-like gas breakdown, preliminary plasma production, and steady-state plasma. Blasting the microwaves without alignment of Heliotron J's magnetic field created a discharge that ripped electrons from their atoms and produced an especially dense plasma.

Energy: Technology Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Highly charged ions melt nano gold nuggets      (via sciencedaily.com)     Original source 

Shooting ions is very different from shooting a gun: By firing highly charged ions onto tiny gold structures, these structures can be modified in technologically interesting ways. Surprisingly, the key is not the force of impact, but the electric charge of the projectiles.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nanophysics: The right twist      (via sciencedaily.com) 

Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.

Chemistry: Biochemistry Energy: Nuclear Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New type of entanglement lets scientists 'see' inside nuclei      (via sciencedaily.com) 

Nuclear physicists have found a new way to see inside nuclei by tracking interactions between particles of light and gluons. The method relies on harnessing a new type of quantum interference between two dissimilar particles. Tracking how these entangled particles emerge from the interactions lets scientists map out the arrangement of gluons. This approach is unusual for making use of entanglement between dissimilar particles -- something rare in quantum studies.