Showing 20 articles starting at article 441

< Previous 20 articles        Next 20 articles >

Categories: Geoscience: Geomagnetic Storms, Physics: General

Return to the site home page

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Bringing out the color in zinc      (via sciencedaily.com)     Original source 

Researchers have synthesized a zinc complex based on two zinc centers that absorbs visible light. They demonstrated that this capability depends on the proximity of the zinc ions, where the complex responds to visible light when the zinc atoms are closer. This new property is expected to expand the utility of zinc, which already offers advantages including biological relevance, cost effectiveness, and low toxicity.

Physics: General
Published

X-rays reveal microstructural fingerprints of 3D-printed alloy      (via sciencedaily.com)     Original source 

Researchers took a novel approach to explore the way microstructure emerges in a 3D-printed metal alloy: They bombarded it with X-rays while the material was being printed.

Chemistry: Biochemistry Engineering: Robotics Research Physics: General Physics: Quantum Physics
Published

Unifying matter, energy and consciousness      (via sciencedaily.com)     Original source 

Understanding the interplay between consciousness, energy and matter could bring important insights to our fundamental understanding of reality.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Ionic crystal generates molecular ions upon positron irradiation, finds new study      (via sciencedaily.com)     Original source 

The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.

Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Geomagnetic Storms Geoscience: Severe Weather Paleontology: Fossils
Published

Researchers identify largest ever solar storm in ancient 14,300-year-old tree rings      (via sciencedaily.com)     Original source 

An international team of scientists have discovered a huge spike in radiocarbon levels 14,300 years ago by analyzing ancient tree-rings found in the French Alps. The radiocarbon spike was caused by a massive solar storm, the biggest ever identified.  A similar solar storm today would be catastrophic for modern technological society – potentially wiping out telecommunications and satellite systems, causing massive electricity grid blackouts, and costing us billions. The academics are warning of the importance of understanding such storms to protect our global communications and energy infrastructure for the future.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Twisted science: New quantum ruler to explore exotic matter      (via sciencedaily.com)     Original source 

Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.   

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Space: Cosmology Space: General
Published

New 'Assembly Theory' unifies physics and biology to explain evolution and complexity      (via sciencedaily.com)     Original source 

An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature. This new work on 'Assembly Theory' represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe.

Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning used to probe the building blocks of shapes      (via sciencedaily.com)     Original source 

Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.

Physics: General Physics: Optics
Published

Lasers deflected using air      (via sciencedaily.com)     Original source 

Using a novel method, beams of laser light can be deflected using air alone. An invisible grating made only of air is not only immune to damage from the laser light, but it also preserves the original quality of the beam.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Intense lasers shine new light on the electron dynamics of liquids      (via sciencedaily.com)     Original source 

The behavior of electrons in liquids is crucial to understanding many chemical processes that occur in our world. Using advanced lasers that operate at the attosecond, a team of international researchers has revealed further insights into how electrons behave in liquids.

Energy: Nuclear Physics: General
Published

Chi-Nu experiment ends with data to support nuclear security, energy reactors      (via sciencedaily.com)     Original source 

The results of the Chi-Nu physics experiment at Los Alamos National Laboratory have contributed essential, never-before-observed data for enhancing nuclear security applications, understanding criticality safety and designing fast-neutron energy reactors.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

3D-printed plasmonic plastic enables large-scale optical sensor production      (via sciencedaily.com)     Original source 

Researchers have developed plasmonic plastic -- a type of composite material with unique optical properties that can be 3D-printed. This research has now resulted in 3D-printed optical hydrogen sensors that could play an important role in the transition to green energy and industry.

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General
Published

Down goes antimatter! Gravity's effect on matter's elusive twin is revealed      (via sciencedaily.com) 

For the first time, in a unique laboratory experiment at CERN, researchers have observed individual atoms of antihydrogen fall under the effects of gravity. In confirming antimatter and regular matter are gravitationally attracted, the finding rules out gravitational repulsion as the reason why antimatter is largely missing from the observable universe.

Energy: Nuclear Energy: Technology Physics: General Physics: Optics
Published

Milestone for novel atomic clock      (via sciencedaily.com)     Original source 

An international research team has taken a decisive step toward a new generation of atomic clocks. The researchers have created a much more precise pulse generator based on the element scandium, which enables an accuracy of one second in 300 billion years -- that is about a thousand times more precise than the current standard atomic clock based on caesium.

Chemistry: Biochemistry Physics: General Physics: Optics
Published

Making a femtosecond laser out of glass      (via sciencedaily.com)     Original source 

Scientists show that it is possible to make a femtosecond laser that fits in the palm of one's hand using a glass substrate.

Chemistry: Biochemistry Chemistry: Thermodynamics Physics: General Physics: Optics Physics: Quantum Physics
Published

Light and sound waves reveal negative pressure      (via sciencedaily.com) 

Negative pressure is a rare and challenging-to-detect phenomenon in physics. Using liquid-filled optical fibers and sound waves, researchers have now discovered a new method to measure it. In collaboration with the Leibniz Institute of Photonic Technologies in

Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Physics: General
Published

Nanofluidic device generates power with saltwater      (via sciencedaily.com)     Original source 

There is a largely untapped energy source along the world's coastlines: the difference in salinity between seawater and freshwater. A new nanodevice can harness this difference to generate power.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Physics: General
Published

One-atom-thick ribbons could improve batteries, solar cells and sensors      (via sciencedaily.com) 

Researchers created nanoribbons made of phosphorus and tiny amounts of arsenic, which they found were able to conduct electricity at temperatures above -140 degrees Celsius, while retaining the highly useful properties of the phosphorus-only ribbons.