Showing 20 articles starting at article 481

< Previous 20 articles        Next 20 articles >

Categories: Geoscience: Geomagnetic Storms, Physics: General

Return to the site home page

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Taking photoclick chemistry to the next level      (via sciencedaily.com) 

Researchers have been able to substantially improve photoclick chemistry. They were able to boost the reactivity of the photoclick compound in the popular PQ-ERA reaction through strategic molecular substitution. They now report a superb photoreaction quantum yield, high reaction rates and notable oxygen tolerance.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A simpler way to connect quantum computers      (via sciencedaily.com) 

Researchers have developed a new approach to building quantum repeaters, devices that can link quantum computers over long distances. The new system transmits low-loss signals over optical fiber using light in the telecom band, a longstanding goal in the march toward robust quantum communication networks.

Chemistry: Organic Chemistry Energy: Alternative Fuels Physics: General
Published

Energy storage in molecules      (via sciencedaily.com) 

Molecular photoswitches that can both convert and store energy could be used to make solar energy harvesting more efficient. A team of researchers has used a quantum computing method to find a particularly efficient molecular structure for this purpose. Their procedure was based on a dataset of more than 400,000 molecules, which they screened to find the optimum molecular structure for solar energy storage materials.

Energy: Nuclear Physics: General
Published

Exploring light neutron-rich nuclei: First observation of oxygen-28      (via sciencedaily.com) 

The neutron-rich oxygen isotopes oxygen-27 and oxygen-28 exist as very short-lived resonances, report scientists based on the first observation of their decay into oxygen-24 and three and four neutrons, respectively. Notably, the oxygen-28 nucleus is found not to be 'doubly magic' as expected in the standard shell-model picture. This study provides valuable insights into the nuclear structure.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Paving the way for advanced quantum sensors      (via sciencedaily.com) 

Quantum physics has allowed for the creation of sensors far surpassing the precision of classical devices. Now, several new studies show that the precision of these quantum sensors can be significantly improved using entanglement produced by finite-range interactions. Researchers were able to demonstrate this enhancement using entangled ion-chains with up to 51 particles.

Physics: General Physics: Optics
Published

Brighter comb lasers on a chip mean new applications      (via sciencedaily.com) 

Researchers have shown that dissipative Kerr solitons (DKSs) can be used to create chip-based optical frequency combs with enough output power for use in optical atomic clocks and other practical applications. The advance could lead to chip-based instruments that can make precision measurements that were previously possible only in a few specialized laboratories.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hotter quantum systems can cool faster than initially colder equivalents      (via sciencedaily.com) 

The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.

Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Graphene: Perfection is futile      (via sciencedaily.com) 

It has long been known that graphene has excellent electronic properties. However, it was unclear until now how stable these properties are. Are they destroyed by disturbances and additional effects, which are unavoidable in practice, or do they remain intact? Scientists have now succeeded in developing a comprehensive computer model of realistic graphene structures. It turned out that the desired effects are very stable. Even graphene pieces that are not quite perfect can be used well for technological applications.

Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Golden rules for building atomic blocks      (via sciencedaily.com) 

Physicists have developed a technique to precisely control the alignment of supermoiré lattices by using a set of golden rules, paving the way for the advancement of next generation moiré quantum matter.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Mathematics: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum computer unveils atomic dynamics of light-sensitive molecules      (via sciencedaily.com) 

Researchers have implemented a quantum-based method to observe a quantum effect in the way light-absorbing molecules interact with incoming photons. Known as a conical intersection, the effect puts limitations on the paths molecules can take to change between different configurations. The observation method makes use of a quantum simulator, developed from research in quantum computing, and offers an example of how advances in quantum computing are being used to investigate fundamental science.

Biology: Zoology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Which radio waves disrupt the magnetic sense in migratory birds?      (via sciencedaily.com) 

Many songbirds use the earth's magnetic field as a guide during their migrations, but radiowaves interfere with this ability. A new study has found an upper bound for the frequency that disrupts the magnetic compass.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists use quantum device to slow down simulated chemical reaction 100 billion times      (via sciencedaily.com) 

Using a trapped-ion quantum computer, the research team witnessed the interference pattern of a single atom caused by a 'conical intersection'. Conical intersections are known throughout chemistry and are vital to rapid photo-chemical processes such as light harvesting in human vision or photosynthesis.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New quantum device generates single photons and encodes information      (via sciencedaily.com) 

A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A team stacked two different, atomically thin materials to realize this chiral quantum light source.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Do measurements produce the reality they show us?      (via sciencedaily.com) 

The measurement values determined in sufficiently precise measurements of physical systems will vary based on the relation between the past and the future of a system determined by its interactions with the meter. This finding may explain why quantum experiments often produce paradoxical results that can contradict our common-sense idea of physical reality.

Biology: Evolutionary Offbeat: Plants and Animals Offbeat: Space Physics: General Space: Cosmology Space: General
Published

How a cup of water can unlock the secrets of our Universe      (via sciencedaily.com)     Original source 

A researcher made a discovery that could change our understanding of the universe. He reveals that there is a range in which fundamental constants can vary, allowing for the viscosity needed for life processes to occur within and between living cells. This is an important piece of the puzzle in determining where these constants come from and how they impact life as we know it.

Chemistry: Inorganic Chemistry Geoscience: Earth Science Physics: General
Published

Hot chemistry quickly transforms aromatic molecules into harmful aerosols      (via sciencedaily.com) 

A research group has established key early steps in the conversion of aromatic molecules, a major constituent of traffic and other urban volatile emissions, into aerosol. Their findings increase understanding of the chemical processes that degrade urban air quality and influence climate change.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Sci­en­tists develop fermionic quan­tum pro­ces­sor      (via sciencedaily.com) 

Researchers have designed a new type of quantum computer that uses fermionic atoms to simulate complex physical systems. The processor uses programmable neutral atom arrays and is capable of simulating fermionic models in a hardware-efficient manner using fermionic gates. The team demonstrated how the new quantum processor can efficiently simulate fermionic models from quantum chemistry and particle physics.

Chemistry: Inorganic Chemistry Physics: General
Published

Topology's role in decoding energy of amorphous systems      (via sciencedaily.com) 

Researchers used topological data analysis to improve the predictions of physical properties of amorphous materials by machine-learning algorithms. This may allow for cheaper and faster calculations of material properties.