Showing 20 articles starting at article 661
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geomagnetic Storms, Physics: General
Published Researchers take a step towards turning interactions that normally ruin quantum information into a way of protecting it


A new method for predicting the behavior of quantum devices provides a crucial tool for real-world applications of quantum technology.
Published Viable superconducting material created, say researchers


Researchers report the creation of a superconducting material at both a temperature and pressure low enough for practical applications. In a new paper, the researchers describe a nitrogen-doped lutetium hydride that exhibits superconductivity at 69 degrees Fahrenheit and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.
Published Graphene quantum dots show promise as novel magnetic field sensors


Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.
Published Two-dimensional quantum freeze


Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.
Published An innovative twist on quantum bits: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits


Scientists develop method for chemically modifying nanoscale tubes of carbon atoms, so they can host spinning electrons to serve as stable quantum bits in quantum technologies.
Published Destroying the superconductivity in a kagome metal


A recent study has uncovered a distinct disorder-driven superconductor-insulator transition. This first electric control of superconductivity and quantum Hall effect in a candidate material for future low-energy electronics has promise to reduce the rising, unsustainable energy cost of computing.
Published Ice-cold electron beams for ultra-compact X-ray lasers



Ice-cold electron beams could pave the way to reducing X-ray free-electron lasers (X-FELs) to a fraction of their current size.
Published Quantum chemistry: Molecules caught tunneling


Quantum effects can play an important role in chemical reactions. Physicists have now observed a quantum mechanical tunneling reaction in experiments. The observation can also be described exactly in theory. The scientists provide an important reference for this fundamental effect in chemistry. It is the slowest reaction with charged particles ever observed.
Published A motion freezer for many particles


From the way that particles scatter light, it is possible to calculate a special light field that can slow these particles down. This is a new and powerful method to cool particles down to extremely low temperatures.
Published Clear sign that quark-gluon plasma production 'turns off' at low energy


Physicists report new evidence that production of an exotic state of matter in collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) can be 'turned off' by lowering the collision energy. The findings will help physicists map out the conditions of temperature and density under which the exotic matter, known as a quark-gluon plasma (QGP), can exist and identify key features of the phases of nuclear matter.
Published New material may offer key to solving quantum computing issue


A new form of heterostructure of layered two-dimensional (2D) materials may enable quantum computing to overcome key barriers to its widespread application, according to an international team of researchers.
Published Unusual atom helps in search for Universe's building blocks


An unusual form of caesium atom is helping a research team unmask unknown particles that make up the Universe.
Published Fastest laser camera films combustion in real time


A research team has developed one of the world's fastest single-shot laser cameras, which is at least a thousand times faster than today's most modern equipment for combustion diagnostics. The discovery has enormous significance for studying the lightning-fast combustion of hydrocarbons.
Published Scientists identify new mechanism of corrosion


It started with a mystery: How did molten salt breach its metal container? Understanding the behavior of molten salt, a proposed coolant for next-generation nuclear reactors and fusion power, is a question of critical safety for advanced energy production. The multi-institutional research team, co-led by Penn State, initially imaged a cross-section of the sealed container, finding no clear pathway for the salt appearing on the outside. The researchers then used electron tomography, a 3D imaging technique, to reveal the tiniest of connected passages linking two sides of the solid container. That finding only led to more questions for the team investigating the strange phenomenon.
Published Heterostructures support predictions of counterpropagating charged edge modes at the v=2/3 fractional quantum Hall state



Researchers have tested models of edge conduction with a device built on top of the semiconductor heterostructure which consists of gold gates that come close together. Voltage is applied on the gates to direct the edge states through the middle of the point contact, where they are close enough that quantum tunneling can occur between the edge states on opposite sides the sample. Changes in the electrical current flowing through the device are used to test the theorists' predictions.
Published Let there be (controlled) light


In the very near future, quantum computers are expected to revolutionize the way we compute, with new approaches to database searches, AI systems, simulations and more. But to achieve such novel quantum technology applications, photonic integrated circuits which can effectively control photonic quantum states -- the so-called qubits -- are needed. Physicists have made a breakthrough in this effort: for the first time, they demonstrated the controlled creation of single-photon emitters in silicon at the nanoscale.
Published Theory can sort order from chaos in complex quantum systems


Theoretical chemists have developed a theory that can predict the threshold at which quantum dynamics switches from 'orderly' to 'random,' as shown through research using large-scale computations on photosynthesis models.
Published The quantum twisting microscope: A new lens on quantum materials


One of the striking aspects of the quantum world is that a particle, say, an electron, is also a wave, meaning that it exists in many places at the same time. Researchers make use of this property to develop a new type of tool -- the quantum twisting microscope (QTM) -- that can create novel quantum materials while simultaneously gazing into the most fundamental quantum nature of their electrons.
Published Physicists give the first law of thermodynamics a makeover


Physicists at West Virginia University have made a breakthrough on an age-old limitation of the first law of thermodynamics.
Published When migrating birds go astray, disturbances in magnetic field may be partly to blame


Disturbances to Earth's magnetic field can lead birds astray -- a phenomenon scientists call 'vagrancy' -- even in perfect weather, and especially during fall migration. While other factors such as weather likely play bigger roles in causing vagrancy, researchers found a strong correlation between birds that were captured far outside of their expected range and the geomagnetic disturbances that occurred during both fall and spring migrations.