Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Severe Weather, Physics: General
Published Understanding the Green Sahara's collapse



Abrupt shifts within complex systems such as the Earth's climate system are extremely hard to predict. Researchers have now succeeded in developing a new method to anticipate such tipping points in advance. They successfully tested the reliability of their method using one of the most severe abrupt climate changes of the past: the shift of the once-green Sahara into a desert.
Published Molecular sponge for the electronics of the future



An international research team has succeeded in developing a new type of material in the rather young research field of covalent organic frameworks. The new two-dimensional polymer is characterized by the fact that its properties can be controlled in a targeted and reversible manner. This has brought the researchers a step closer to the goal of realizing switchable quantum states.
Published Quantum entanglement measures Earth rotation



Researchers carried out a pioneering experiment where they measured the effect of the rotation of Earth on quantum entangled photons. The work represents a significant achievement that pushes the boundaries of rotation sensitivity in entanglement-based sensors, potentially setting the stage for further exploration at the intersection between quantum mechanics and general relativity.
Published A liquid crystal source of photon pairs



Spontaneous parametric down-conversion (SPDC), as a source of entangled photons, is of great interest for quantum physics and quantum technology, but so far it could be only implemented in solids. Researchers have demonstrated, for the first time, SPDC in a liquid crystal. The results open a path to a new generation of quantum sources: efficient and electric-field tunable.
Published Novel insights into fluorescent 'dark states' illuminate ways forward for improved imaging



Scientists address decades-long problem in the field of single-molecule fluorescence resonance energy transfer, paving the way for more accurate experiments.
Published Pair plasmas found in deep space can now be generated in the lab



Researchers have experimentally generated high-density relativistic electron-positron pair-plasma beams by producing two to three orders of magnitude more pairs than previously reported.
Published Video analysis of Iceland 2010 eruption could improve volcanic ash forecasts for aviation safety



Video footage of Iceland's 2010 Eyjafjallaj kull eruption is providing researchers with rare, up-close observations of volcanic ash clouds -- information that could help better forecast how far explosive eruptions disperse their hazardous ash particles.
Published Public more confident connecting increasing heat, wildfires with climate change than other extreme weather events, study finds



Researchers found that U.S. adults are fairly confident in linking wildfires and heat to climate change, but less confident when it comes to other extreme weather events like hurricanes, flooding or tornadoes.
Published Quantum data assimilation: A quantum leap in weather prediction



Data assimilation is an important mathematical discipline in earth sciences, particularly in numerical weather prediction (NWP). However, conventional data assimilation methods require significant computational resources. To address this, researchers developed a novel method to solve data assimilation on quantum computers, significantly reducing the computation time. The findings of the study have the potential to advance NWP systems and will inspire practical applications of quantum computers for advancing data assimilation.
Published Quantum dots and metasurfaces: Deep connections in the nano world



A team has developed printable, highly efficient light-emitting metasurfaces.
Published Uncovering the nature of emergent magnetic monopoles



To understand the unique physical phenomena associated with the properties of magnetic hedgehogs and antihedgehogs, which behave as virtual magnetic monopoles and antimonopoles respectively, it is essential to study their intrinsic excitations. In a new study, researchers revealed the dynamical nature of collective excitation modes in hedgehog lattices in itinerant chiral magnets. Their findings serve as the foundation for studying the dynamics of emergent magnetic monopoles in magnets.
Published New plasma escape mechanism could protect fusion vessels from excessive heat



The exhaust heat generated by a fusing plasma in a commercial-scale reactor may not be as damaging to the vessel's innards as once thought, according to new research about escaping plasma particles.
Published New technique could help build quantum computers of the future



Researchers have demonstrated a new method that could enable the large-scale manufacturing of optical qubits. The advance could bring us closer to a scalable quantum computer.
Published Semiconductor doping and electronic devices: Heating gallium nitride and magnesium forms superlattice



A study revealed that a simple thermal reaction of gallium nitride with metallic magnesium results in the formation of a distinctive superlattice structure. This represents the first time researchers have identified the insertion of 2D metal layers into a bulk semiconductor. By carefully observing materials through various cutting-edge characterization techniques, the researchers uncovered new insights into the process of semiconductor doping and elastic strain engineering.
Published Switching nanomagnets using infrared lasers



Physicists have calculated how suitable molecules can be stimulated by infrared light pulses to form tiny magnetic fields. If this is also successful in experiments, the principle could be used in quantum computer circuits.
Published Researchers use 3D visualization to predict, prevent hurricane damage



The researchers say 3D visualization of hurricanes and storm surges allows them to understand how flooding will impact coastal communities by allowing them to vividly see how each building and road might be impacted by a given flood.
Published Study estimates that between 1980 and 2020, 135 million premature deaths could be linked to fine particulate matter pollution



A study has revealed that fine particulate matter from 1980 to 2020 was associated with approximately 135 million premature deaths globally.
Published 'Quantum optical antennas' provide more powerful measurements on the atomic level



A multi-institutional team has created atomic optical antennas in solids. The team used germanium vacancy centers in diamonds to create an optical energy enhancement of six orders of magnitude, a regime challenging to reach with conventional atomic antenna structures.
Published Perturbations simplify the study of 'super photons'



Thousands of particles of light can merge into a type of 'super photon' under suitable conditions. Physicists call such a state a photon Bose-Einstein condensate. Researchers have now shown that this exotic quantum state obeys a fundamental theorem of physics. This finding now allows one to measure properties of photon Bose-Einstein condensates which are usually difficult to access.
Published Earth and space share the same turbulence



Researchers have discovered that the turbulence found in the thermosphere -- known as the gateway to space -- and turbulence in the troposphere, here closer to sea level, follow the same physical laws despite having drastically different atmospheric compositions and dynamics.