Showing 20 articles starting at article 321
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Earth Science, Physics: General
Published Ion irradiation offers promise for 2D material probing



Two-dimensional materials such as graphene promise to form the basis of incredibly small and fast technologies, but this requires a detailed understanding of their electronic properties. New research demonstrates that fast electronic processes can be probed by irradiating the materials with ions first.
Published Scientists develop new geochemical 'fingerprint' to trace contaminants in fertilizer



An international team of scientists has revealed high levels of toxic metals in global phosphate fertilizers using a isotopic variants of the element strontium as a tracer to uncover metals in soil, groundwater and possibly the food chain.
Published Scale matters in determining vulnerability of freshwater fish to climate changes



A team explored the influence the spatial extent of research -- the geographical coverage of data collected -- has on evaluating the sensitivity of different fish species to climate change.
Published Magnetic imprint on deconfined nuclear matter



Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.
Published Differing values of nature can still lead to joined up goals for sustainability



Recognizing and respecting the different ways nature is valued can enable better environmental decision-making, according to new research.
Published Can we revolutionize the chemical industry and create a circular economy? Yes, with the help of catalysts



A new commentary paper puts forth a transformative solution to the unsustainable reliance on fossil resources by the chemical industry: catalysis to leverage sustainable waste resources, ushering the industry from a linear to a circular economy.
Published Diamond glitter: A play of colors with artificial DNA crystals



Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.
Published Scientists use generative AI to answer complex questions in physics



Researchers used generative AI to develop a physics-informed technique to classify phase transitions in materials or physical systems that is much more efficient than existing machine-learning approaches.
Published Shedding light on perovskite hydrides using a new deposition technique



Perovskite hydrides are promising materials for various emerging energy technologies, but measuring their intrinsic hydride-ion conductivity is difficult. In a recent study, researchers address this issue using a novel laser deposition technique in an H-radical atmosphere. Using this approach, they grew thin-film single crystals of two different perovskite hydrides and characterized their hydride-ion conductivity. These efforts will bolster research on hydrogen-related materials.
Published Summers warm up faster than winters, fossil shells from Antwerp show



In a warmer climate, summers warm much faster than winters, according to research into fossil shells. With this knowledge we can better map the consequences of current global warming in the North Sea area.
Published A simple quantum internet with significant possibilities



It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.
Published Scientists create an 'optical conveyor belt' for quasiparticles



Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.
Published Using artificial intelligence to speed up and improve the most computationally-intensive aspects of plasma physics in fusion



Researchers are using artificial intelligence to perfect the design of the vessels surrounding the super-hot plasma, optimize heating methods and maintain stable control of the reaction for increasingly long periods. A new article explains how a researcher team used machine learning to avoid magnetic perturbations, or disruptions, which destabilize fusion plasma.
Published Speedy, secure, sustainable -- that's the future of telecom



A new device that can process information using a small amount of light could enable energy-efficient and secure communications.
Published Milestone in plasma acceleration



Scientists have made a significant advance in laser plasma acceleration. By employing an innovative method, a research team managed to substantially exceed the previous record for proton acceleration. For the first time, they achieved energies that so far have only seemed possible at much larger facilities. As the research group reported, promising applications in medicine and materials science have now become much likelier.
Published Today's world: Fastest rate of carbon dioxide rise over the last 50,000 years



Today's rate of atmospheric carbon dioxide increase is 10 times faster than at any other point in the past 50,000 years, researchers have found through a detailed chemical analysis of ancient Antarctic ice.
Published New work extends the thermodynamic theory of computation



Physicists and computer scientists have recently expanded the modern theory of the thermodynamics of computation. By combining approaches from statistical physics and computer science, the researchers introduce mathematical equations that reveal the minimum and maximum predicted energy cost of computational processes that depend on randomness, which is a powerful tool in modern computers.
Published Island birds more adaptable than previously thought



The researchers found that birds were more evolutionarily similar on smaller, more isolated islands than on larger, less remote places. The team had expected to find that forested areas had more numerous and more varied species of birds compared to farmland areas. But they were surprised to find that the opposite was true: Areas with farms and human settlements had more species of birds and greater diversity than forested areas.
Published Hide and seek between atoms: Find the dopant



Collaborative efforts decode the mechanism behind stabilizing cathode doping in electric vehicle batteries.
Published Clues from deep magma reservoirs could improve volcanic eruption forecasts



New research into molten rock 20km below the Earth's surface could help save lives by improving the prediction of volcanic activity.