Showing 20 articles starting at article 801
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geochemistry, Physics: General
Published A non-proliferation solution: Using antineutrinos to surveil nuclear reactors



Antineutrinos generated in nuclear fission can be measured to remotely monitor the operation of nuclear reactors and verify that they are not being used to produce nuclear weapons, report scientists. Thanks to a newly developed method, it is now possible to estimate a reactor's operation status, fuel burnup, and fuel composition based entirely on its antineutrino emissions. This technique could contribute massively to nuclear non-proliferation efforts and, in turn, safer nuclear energy.
Published Long live the graphene valley state



Researchers found evidence that bilayer graphene quantum dots may host a promising new type of quantum bit based on so-called valley states.
Published New AI makes better permafrost maps



New insights from artificial intelligence about permafrost coverage in the Arctic may soon give policy makers and land managers the high-resolution view they need to predict climate-change-driven threats to infrastructure such as oil pipelines, roads and national security facilities.
Published Artificial 'power plants' harness energy from wind and rain



Fake plants are moving into the 21st century! Researchers developed literal 'power plants' -- tiny, leaf-shaped generators that create electricity from a blowing breeze or falling raindrops. The team tested the energy harvesters by incorporating them into artificial plants.
Published The surface knows what lies beneath: Physicists show how to detect higher-order topological insulators



Just like a book can't be judged by its cover, a material can't always be judged by its surface. But, for an elusive conjectured class of materials, physicists have now shown that the surface previously thought to be 'featureless' holds an unmistakable signature that could lead to the first definitive observation.
Published Physicists identify overlooked uncertainty in real-world experiments



The rules of statistical physics address the uncertainty about the state of a system that arises when that system interacts with its environment. But they've long missed another kind. In a new paper, researchers argue that uncertainty in the thermodynamic parameters themselves -- built into equations that govern the energetic behavior of the system -- may also influence the outcome of an experiment.
Published Solid-state qubits: Forget about being clean, embrace mess



New findings debunk previous wisdom that solid-state qubits need to be super dilute in an ultra-clean material to achieve long lifetimes. Instead, cram lots of rare-earth ions into a crystal and some will form pairs that act as highly coherent qubits, a new paper shows.
Published More aerosol particles than thought are forming over Siberia, study finds



A new study finds that, contrary to previous beliefs, large amounts of aerosol particles can form over vast areas of the West Siberian taiga in the spring. When temperatures rise, this can have a significant impact on the climate.
Published Capturing greenhouse gases with the help of light



Researchers use light-reactive molecules to influence the acidity of a liquid and thereby capture of carbon dioxide. They have developed a special mixture of different solvents to ensure that the light-reactive molecules remain stable over a long period of time. Conventional carbon capture technologies are driven by temperature or pressure differences and require a lot of energy. This is no longer necessary with the new light-based process.
Published Study uncovers potential origins of life in ancient hot springs



A research team investigated how the emergence of the first living systems from inert geological materials happened on the Earth, more than 3.5 billion years ago. Scientists found that by mixing hydrogen, bicarbonate, and iron-rich magnetite under conditions mimicking relatively mild hydrothermal vent results in the formation of a spectrum of organic molecules, most notably including fatty acids stretching up to 18 carbon atoms in length.
Published Bulky additives could make cheaper solar cells last longer



An insight into preventing perovskite semiconductors from degrading quickly could help enable solar cells estimated to be two to four times cheaper than today's thin-film solar panels.
Published Bridging light and electrons



Researchers have merged nonlinear optics with electron microscopy, unlocking new capabilities in material studies and the control of electron beams.
Published Molecularly designing polymer networks to control sound damping



The world is filled with a myriad of sounds and vibrations -- the gentle tones of a piano drifting down the hall, the relaxing purr of a cat laying on your chest, the annoying hum of the office lights. Imagine being able to selectively tune out noises of a certain frequency. Researchers have now synthesized polymer networks with two distinct architectures and crosslink points capable of dynamically exchanging polymer strands to understand how the network connectivity and bond exchange mechanisms govern the overall damping behavior of the network. The incorporation of dynamic bonds into the polymer network demonstrates excellent damping of sound and vibrations at well-defined frequencies.
Published Catalytic combo converts CO2 to solid carbon nanofibers



Scientists have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure and could successfully lock carbon away to offset or even achieve negative carbon emissions.
Published Revolutionizing real-time data processing with edge computing and reservoir technology



Traditional cloud computing faces various challenges when processing large amounts of data in real time. 'Edge' computing is a promising alternative and can benefit from devices known as physical reservoirs. Researchers have now developed a novel memristor device for this purpose. It responds to electrical and optical signals and overcomes real-time processing limitations. When tested, it achieved up to 90.2% accuracy in digit identification, demonstrating its potential for applications in artificial intelligence systems and beyond.
Published Generating stable qubits at room temperature



Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.
Published First direct imaging of small noble gas clusters at room temperature



Scientists have succeeded in the stabilization and direct imaging of small clusters of noble gas atoms at room temperature. This achievement opens up exciting possibilities for fundamental research in condensed matter physics and applications in quantum information technology. The key to this breakthrough was the confinement of noble gas atoms between two layers of graphene.
Published Toxic algae blooms: Study assesses potential health hazards to humans



Water samples from 20 sites were tested using a panel of immortalized human cell lines corresponding to the liver, kidney and brain to measure cytotoxicity. Results show that each control toxin induced a consistent pattern of cytotoxicity in the panel of human cell lines assayed. Known toxins were seen only during blooms. Because cell toxicity was seen in the absence of blooms, it suggests that there might be either emergent toxins or a combination of toxins present at those times. Findings suggest that other toxins with the potential to be harmful to human health may be present in the lagoon.
Published Record heat in 2023 worsened global droughts, floods and wildfires



Record heat across the world profoundly impacted the global water cycle in 2023, contributing to severe storms, floods, megadroughts and bushfires, new research shows.
Published Dry-cleaning fluid becomes a synthetic chemist's treasure



The widely used dry-cleaning and degreasing solvent perc can be converted to useful chemicals by a new clean, safe and inexpensive procedure. The discovery using on-demand UV activation may open the path to upcycling perc and thus contribute to a more sustainable society.