Showing 20 articles starting at article 1141
< Previous 20 articles Next 20 articles >
Categories: Physics: General, Space: Exploration
Published Highly charged ions melt nano gold nuggets



Shooting ions is very different from shooting a gun: By firing highly charged ions onto tiny gold structures, these structures can be modified in technologically interesting ways. Surprisingly, the key is not the force of impact, but the electric charge of the projectiles.
Published Redness of Neptunian asteroids sheds light on early Solar System


Asteroids sharing their orbits with the planet Neptune have been observed to exist in a broad spectrum of red color, implying the existence of two populations of asteroids in the region, according to a new study by an international team of researchers.
Published Nanophysics: The right twist


Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.
Published JWST confirms giant planet atmospheres vary widely


Astronomers have found the atmospheric compositions of giant planets out in the galaxy do not fit our own solar system trend.
Published Temperature of a rocky exoplanet measured


An international team of researchers has used NASA's James Webb Space Telescope to measure the temperature of the rocky exoplanet TRAPPIST-1 b. The measurement is based on the planet's thermal emission: heat energy given off in the form of infrared light detected by Webb's Mid-Infrared Instrument (MIRI). The result indicates that the planet's dayside has a temperature of about 500 kelvins (roughly 450 degrees Fahrenheit) and suggests that it has no significant atmosphere.
Published Two meteorites are providing a detailed look into outer space


If you've ever seen a shooting star, you might have seen a meteor on its way to Earth. Those that land here can be used to peek back in time, into the far corners of outer space or at the earliest building blocks of life. Scientists have conducted some of the most detailed analyses yet on the organic material of two meteorites.
Published New type of entanglement lets scientists 'see' inside nuclei


Nuclear physicists have found a new way to see inside nuclei by tracking interactions between particles of light and gluons. The method relies on harnessing a new type of quantum interference between two dissimilar particles. Tracking how these entangled particles emerge from the interactions lets scientists map out the arrangement of gluons. This approach is unusual for making use of entanglement between dissimilar particles -- something rare in quantum studies.
Published Photosynthesis: Varying roads lead to the reaction center


Chemists use high-precision quantum chemistry to study key elements of super-efficient energy transfer in an important element of photosynthesis.
Published Graphene grows -- and we can see it


Graphene is the strongest of all materials. On top of that, it is exceptionally good at conducting heat and electrical currents, making it one of the most special and versatile materials we know. For all these reasons, the discovery of graphene was awarded the Nobel Prize in Physics in 2010. Yet, many properties of the material and its cousins are still poorly understood -- for the simple reason that the atoms they are made up of are very difficult to observe.
Published Scientists discover easy way to make atomically-thin metal layers for new technology


A new breakthrough shows how to make MXenes far more quickly and easily, with fewer toxic byproducts.
Published AI finds the first stars were not alone


Machine learning and state-of-the-art supernova nucleosynthesis has helped researchers find that the majority of observed second-generation stars in the universe were enriched by multiple supernovae.
Published Optical switching at record speeds opens door for ultrafast, light-based electronics and computers


Imagine a home computer operating 1 million times faster than the most expensive hardware on the market. Now, imagine that being the industry standard. Physicists hope to pave the way for that reality.
Published Surprisingly simple explanation for the alien comet 'Oumuamua's weird orbit


When the first interstellar comet ever seen in our solar system was discovered in 2017, one characteristic -- an unexplained acceleration away from the sun -- sparked wild speculation, including that it was an alien spacecraft. An astrochemist found a simpler explanation and tested it with an astronomer: in interstellar space, cosmic rays converted water to hydrogen in the comet's outer layers. Nearing the sun, outgassed hydrogen gave the tiny comet a kick.
Published Semiconductor lattice marries electrons and magnetic moments


A model system created by stacking a pair of monolayer semiconductors is giving physicists a simpler way to study confounding quantum behavior, from heavy fermions to exotic quantum phase transitions.
Published New microchip links two Nobel Prize-winning techniques


Physicists have built a new technology on a microchip by combining two Nobel Prize-winning techniques. This microchip could measure distances in materials at high precision, for example underwater or for medical imaging. Because the technology uses sound vibrations instead of light, it is useful for high-precision position measurements in opaque materials. There's no need for complex feedback loops or for tuning certain parameters to get it to operate properly. This makes it a very simple and low-power technology, that is much easier to miniaturize on a microchip. What makes it special is that it doesn't need any precision hardware and is therefore easy to produce. It only requires inserting a laser, and nothing else. The instrument could lead to new techniques to monitor the Earth's climate and human health.
Published New simulation reveals secrets of exotic form of electrons called polarons


Conditions mapped for the first time of polaron characteristics in 2D materials. TACC's Frontera supercomputer generated quantum mechanical calculations on hexagonal boron nitride system of 30,000 atoms.
Published Neutrinos made by a particle collider detected


Physicists have detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, which were first spotted in 1956 and play a key role in the process that makes stars burn.
Published Searching for life with space dust


Following enormous collisions, such as asteroid impacts, some amount of material from an impacted world may be ejected into space. This material can travel vast distances and for extremely long periods of time. In theory this material could contain direct or indirect signs of life from the host world, such as fossils of microorganisms. And this material could be detectable by humans in the near future, or even now.
Published Hunting Venus 2.0: Scientists sharpen their sights


With the first paper compiling all known information about planets like Venus beyond our solar system, scientists are the closest they've ever been to finding an analog of Earth's 'twin.'
Published Ultra-lightweight multifunctional space skin created to withstand extreme conditions in space


A new nano-barrier coating could help protect ultra-lightweight carbon composite materials from extreme conditions in space, according to a new study.