Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Physics: General, Space: Exploration
Published Designing the 'perfect' meal to feed long-term space travelers



Imagine blasting off on a multiyear voyage to Mars, fueled by a diet of bland, prepackaged meals. As space agencies plan for longer missions, they're grappling with the challenge of how to best feed people. Now, researchers have designed the optimal 'space meal': a tasty vegetarian salad. They chose fresh ingredients that meet male astronauts' specialized nutritional needs and can be grown in space.
Published Molecules exhibit non-reciprocal interactions without external forces



Researchers have discovered that molecules experience non-reciprocal interactions without external forces. Fundamental forces such as gravity and electromagnetism are reciprocal, where two objects are attracted to each other or are repelled by each other. In our everyday experience, however, interactions don t seem to follow this reciprocal law.
Published A carbon-lite atmosphere could be a sign of water and life on other terrestrial planets



Best chance of finding liquid water, and even life on other planets, is to look for the absence of carbon dioxide in their atmospheres.
Published Laser-driving a 2D material



Engineers pair vibrating particles, called phonons, with particles of light, called photons, to enhance the nonlinear optical properties of hexagonal boron nitride.
Published Organic compounds in asteroids formed in colder regions of space



Analysis of organic compounds -- called polycyclic aromatic hydrocarbons (PAHs) -- extracted from the Ryugu asteroid and Murchison meteorite has found that certain PAHs likely formed in the cold areas of space between stars rather than in hot regions near stars as was previously thought. The findings open new possibilities for studying life beyond Earth and the chemistry of objects in space.
Published Astronomers detect seismic ripples in ancient galactic disk



A new snapshot of an ancient, far-off galaxy could help scientists understand how it formed and the origins of our own Milky Way. At more than 12 billion years old, BRI 1335-0417 is the oldest and furthest known spiral galaxy in our universe. The researchers were able to not only capture the motion of the gas around BRI 1335-0417, but also reveal a seismic wave forming -- a first in this type of early galaxy.
Published New 1.5-billion-pixel image shows Running Chicken Nebula in unprecedented detail



While many holiday traditions involve feasts of turkey, soba noodles, latkes or Pan de Pascua, this year, the European Southern Observatory is bringing you a holiday chicken. The so-called Running Chicken Nebula, home to young stars in the making, is revealed in spectacular detail in this 1.5-billion-pixel image captured by the VLT Survey Telescope.
Published NASA's Hubble watches 'spoke season' on Saturn



A new photo of Saturn was taken by NASA's Hubble Space Telescope on October 22, 2023, when the ringed planet was approximately 850 million miles from Earth. Hubble's ultra-sharp vision reveals a phenomenon called ring spokes.
Published Supernova encore: Second lensed supernova in a distant galaxy



In November 2023, NASA's James Webb Space Telescope observed a massive cluster of galaxies named MACS J0138.0-2155. Through an effect called gravitational lensing, first predicted by Albert Einstein, a distant galaxy named MRG-M0138 appears warped by the powerful gravity of the intervening galaxy cluster. In addition to warping and magnifying the distant galaxy, the gravitational lensing effect caused by MACS J0138 produces five different images of MRG-M0138.
Published Pancake stack of films on a balloon most accurate gamma-ray telescope



A pancake stack of radioactivity-sensitive films carried through the sky by a balloon was able to take the world's most accurate picture of a neutron star's gamma ray beam. To achieve this, researchers combined the oldest method of capturing radioactive radiation with the newest data capturing techniques and a clever time-recording device.
Published Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting



Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.
Published Unconventional magnets: Stress reduces frustration



An international research team recently demonstrated how magnetism can be actively changed by pressure.
Published One small material, one giant leap for life on Mars: New research takes us a step closer to sustaining human life on the red planet



Researchers have discovered the transformative potential of Martian nanomaterials, potentially opening the door to sustainable habitation on the red planet.
Published New strategy reveals 'full chemical complexity' of quantum decoherence



Scientists have developed a method to extract the spectral density for molecules in solvent using simple resonance Raman experiments -- a method that captures the full complexity of chemical environments.
Published Ringing in the holidays with ringed planet Uranus



NASA's James Webb Space Telescope recently trained its sights on unusual and enigmatic Uranus, an ice giant that spins on its side. Webb captured this dynamic world with rings, moons, storms, and other atmospheric features -- including a seasonal polar cap. The image expands upon a two-color version released earlier this year, adding additional wavelength coverage for a more detailed look.
Published Unveiling molecular origami: A breakthrough in dynamic materials



A research team has unveiled a remarkable breakthrough in the form of a two-dimensional (2D) Metal Organic Framework (MOF) that showcases unprecedented origami-like movement at the molecular level. This pioneering study represents a significant leap forward in the field of dynamic materials, while also hinting at futuristic applications in metamaterials and quantum computing.
Published Filming the microscopic flow of hydrogen atoms in a metal



Using conventional X-rays and lasers to detect the atomic state of hydrogen is challenging, given its small size. A group of researchers may have overcome this barrier by unveiling a new visualization technique that employs an optical microscope and polyaniline to paint a better picture of how hydrogen behaves in metals.
Published Machine learning boosts search for new materials



During X-ray diffraction experiments, bright lasers shine on a sample, producing diffracted images that contain important information about the material's structure and properties. But conventional methods of analyzing these images can be contentious, time-consuming, and often ineffective, so scientists are developing deep learning models to better leverage the data.
Published Scientists measure the distance to stars by their music



A team of astronomers has used asteroseismology, or the study of stellar oscillations, to accurately measure the distance of stars from the Earth. Their research examined thousands of stars and checked the measurements taken during the Gaia mission to study the near Universe.
Published Computational model captures the elusive transition states of chemical reactions



Researchers developed a way to quickly calculate the transition state structure of a chemical reaction, using machine-learning models.