Showing 20 articles starting at article 641
< Previous 20 articles Next 20 articles >
Categories: Physics: General, Space: Exploration
Published Stellar winds regulate growth of galaxies



Galactic winds enable the exchange of matter between galaxies and their surroundings. In this way, they limit the growth of galaxies, that is, their star formation rate. Although this had already been observed in the local universe, an international research team has just revealed the existence of the phenomenon in galaxies which are more than 7 billion years old and actively forming stars, the category to which most galaxies belong. The team's findings thus show this is a universal process.
Published Limitations of asteroid crater lakes as climate archives



In southern Germany just north of the Danube, there lies a large circular depression between the hilly surroundings: the Nördlinger Ries. Almost 15 million years ago, an asteroid struck this spot. Today, the impact crater is one of the most useful analogues for asteroid craters on early Mars. Studying the deposits of the former lake that formed in the crater is particularly informative. These deposits have been of great interest ever since NASA began exploring Martian craters for signs of water and life on Mars.
Published Diamonds and rust help unveil 'impossible' quasi-particles



Researchers have discovered magnetic monopoles -- isolated magnetic charges -- in a material closely related to rust, a result that could be used to power greener and faster computing technologies.
Published Astronomers determine the age of three mysterious baby stars at the heart of the Milky Way



Through analysis of high-resolution data from a ten-meter telescope in Hawaii, researchers have succeeded in generating new knowledge about three stars at the very heart of the Milky Way. The stars proved to be unusually young with a puzzling chemical composition that surprised the researchers.
Published Can signs of life be detected from Saturn's frigid moon?



Researchers have shown unambiguous laboratory evidence that amino acids transported in the ice plumes of Saturn's moon, Eceladus, can survive impact speeds of up to 4.2 km/s, supporting their detection during sampling by spacecraft.
Published Optical data storage breakthrough



Physicists have developed a technique with the potential to enhance optical data storage capacity in diamonds. This is possible by multiplexing the storage in the spectral domain.
Published Tracking undetectable space junk



Satellite and spacecraft operators may finally be able to detect small pieces of debris orbiting Earth using a new approach. Colliding pieces of space debris emit electric signals that could help track small debris littering Earth's orbit, potentially saving satellites and spacecraft.
Published 10-billion-year, 50,000-light-year journey to black hole



A star near the supermassive black hole at the center of the Milky Way Galaxy originated outside of the Galaxy according to a new study. This is the first time a star of extragalactic origin has been found in the vicinity of the super massive black hole.
Published New theory unites Einstein's gravity with quantum mechanics



The prevailing assumption has been that Einstein's theory of gravity must be modified, or 'quantized', in order to fit within quantum theory. This is the approach of two leading candidates for a quantum theory of gravity, string theory and loop quantum gravity. But a new theory challenges that consensus and takes an alternative approach by suggesting that spacetime may be classical -- that is, not governed by quantum theory at all.
Published Quantum physics: Superconducting Nanowires Detect Single Protein Ions



An international research team has achieved a breakthrough in the detection of protein ions: Due to their high energy sensitivity, superconducting nanowire detectors achieve almost 100% quantum efficiency and exceed the detection efficiency of conventional ion detectors at low energies by a factor of up to a 1,000. In contrast to conventional detectors, they can also distinguish macromolecules by their impact energy. This allows for more sensitive detection of proteins and it provides additional information in mass spectrometry.
Published Engineers tackle hard-to-map class of materials



Materials scientists mapped the structural features of a 2D ferroelectric material made of tin and selenium atoms using a new technique that can be applied to other 2D van der Waals ferroelectrics, unlocking their potential for use in electronics and other applications.
Published Dark galactic region nicknamed 'The Brick' explained with Webb telescope findings



Using the James Webb Space Telescope, astronomers spot unexpected source of carbon monoxide ice at galactic region surprisingly devoid of stars.
Published Ghostlike dusty galaxy reappears in James Webb Space Telescope image



Astronomers studying images from the James Webb Space Telescope have identified an object as a 'dusty star-forming galaxy' from nearly 1 billion years after the Big Bang. They have also discovered more than a dozen additional candidates, suggesting these galaxies might be three to 10 times as common as expected. If that conclusion is confirmed, it suggests the early universe was much dustier than previously thought.
Published Meteorites likely source of nitrogen for early Earth



Micrometeorites originating from icy celestial bodies in the outer Solar System may be responsible for transporting nitrogen to the near-Earth region in the early days of our solar system.
Published Harvesting more solar energy with supercrystals



Hydrogen is a building block for the energy transition. To obtain it with the help of solar energy, researchers have developed new high-performance nanostructures. The material holds a world record for green hydrogen production with sunlight.
Published Control over friction, from small to large scales



Friction is hard to predict and control, especially since surfaces that come in contact are rarely perfectly flat. New experiments demonstrate that the amount of friction between two silicon surfaces, even at large scales, is determined by the forming and rupturing of microscopic chemical bonds between them. This makes it possible to control the amount of friction using surface chemistry techniques.
Published A new possible explanation for the Hubble tension



The universe is expanding. How fast it does so is described by the so-called Hubble-Lemaitre constant. But there is a dispute about how big this constant actually is: Different measurement methods provide contradictory values. This so-called 'Hubble tension' poses a puzzle for cosmologists. Researchers are now proposing a new solution: Using an alternative theory of gravity, the discrepancy in the measured values can be easily explained -- the Hubble tension disappears.
Published Discovery of planet too big for its sun throws off solar system formation models



The discovery of a planet that is far too massive for its sun is calling into question what was previously understood about the formation of planets and their solar systems.
Published Rocky planets can form in extreme environments



Astronomers have provided the first observation of water and other molecules in the highly irradiated inner, rocky-planet-forming regions of a disk in one of the most extreme environments in our galaxy. These results suggest that the conditions for terrestrial planet formation can occur in a possible broader range of environments than previously thought.
Published Researchers show an old law still holds for quirky quantum materials



Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat. And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested. This so-called Wiedemann-Franz law has held ever since -- except in quantum materials. Now, a theoretical argument put forth by physicists suggests that the law should, in fact, approximately hold for one type of quantum material, the cuprate superconductors.