Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Anthropology: Cultures, Physics: General
Published A miniature magnetic resonance imager made of diamond



The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.
Published Electron-rich metals make ceramics tough to crack



Engineers have developed a recipe to make a certain class of ceramics tougher and more resistant to cracking. The newfound toughness of these ceramics paves the way for their use in extreme applications, such as spacecraft and other hypersonic vehicles.
Published Scientists propose super-bright light sources powered by quasiparticles



Researchers have proposed ways to use quasiparticles to create light sources as powerful as the most advanced ones in existence today, but much smaller.
Published Electrical control of quantum phenomenon could improve future electronic devices



A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.
Published Going rogue: Scientists apply giant wave mechanics on a nanometric scale



Researchers have shown how the principles of rogue waves -- huge 30-meter waves that arise unexpectedly in the ocean -- can be applied on a nano scale, with dozens of applications from medicine to manufacturing.
Published The encounter between Neanderthals and Sapiens as told by their genomes



About 40,000 years ago, Neanderthals, who had lived for hundreds of thousands of years in the western part of the Eurasian continent, gave way to Homo sapiens, who had arrived from Africa. This replacement was not sudden, and the two species coexisted for a few millennia, resulting in the integration of Neanderthal DNA into the genome of Sapiens. Researchers have analyzed the distribution of the portion of DNA inherited from Neanderthals in the genomes of humans (Homo sapiens) over the last 40,000 years. These statistical analyses revealed subtle variations in time and geographical space.
Published Milestone: Miniature particle accelerator works



Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky. Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. Two teams of laser physicists have just succeeded in demonstrating a nanophotonic electron accelerator.
Published Superlensing without a super lens: Physicists boost microscopes beyond limits



Attempts to break the diffraction limit with 'super lenses' have all hit the hurdle of extreme visual losses. Now physicists have shown a new pathway to achieve superlensing with minimal losses, breaking through the diffraction limit by a factor of nearly four times. The key to their success was to remove the super lens altogether.
Published From a five-layer graphene sandwich, a rare electronic state emerges



When stacked in five layers in a rhombohedral pattern, graphene takes on a rare 'multiferroic' state, exhibiting both unconventional magnetism and an exotic electronic behavior known as ferro-valleytricity.
Published Physicists create new form of antenna for radio waves



Physicists have used a small glass bulb containing an atomic vapor to demonstrate a new form of antenna for radio waves. The bulb was 'wired up' with laser beams and could therefore be placed far from any receiver electronics.
Published Harnessing molecular power: Electricity generation on the nanoscale



Researchers tested a molecular energy harvesting device that captures the energy from the natural motion of molecules in a liquid. Their work showed molecular motion can be used to generate a stable electric current. To create the device, they submerged nanoarrays of piezoelectric material in liquid, allowing the movement of the liquid to move the strands like seaweed waving in the ocean, except in this case the movement is on the molecular scale, and the strands are made of zinc oxide. When the zinc oxide material waves, bends, or deforms under motion, it generates electric potential.
Published Neutrons see stress in 3D-printed parts, advancing additive manufacturing



Using neutrons to see the additive manufacturing process at the atomic level, scientists have shown that they can measure strain in a material as it evolves and track how atoms move in response to stress.
Published Photonic crystals bend light as though it were under the influence of gravity



Scientists have theoretically predicted that light can be bent under pseudogravity. A recent study by researchers using photonic crystals has demonstrated this phenomenon. This breakthrough has significant implications for optics, materials science, and the development of 6G communications.
Published A non-exploitative economy favored the splendor of the Iberian Peninsula's Copper Age communities



A study describes the productive forces of the Chalcolithic communities of the southern half of the Iberian Peninsula as being very diverse, both in the type of tasks performed and in intensity, with a high degree of cooperation and no apparent signs of dependence between the different types of settlements or of political centralization. The work, based on the analysis of macrolithic tool data and the additional support of bioarchaeological information, allows to confirm the large ditched enclosure of Valencina de la Concepción (Seville) as a macro-populated area, inhabited by thousands of people, and not only as a place of worship.
Published Simulations of 'backwards time travel' can improve scientific experiments



Physicists have shown that simulating models of hypothetical time travel can solve experimental problems that appear impossible to solve using standard physics.
Published The fuel economy of a microswimmer



The amount of power a microswimmer needs to move can now be determined more easily. Scientists developed a general theorem to calculate the minimal energy required for propulsion. These insights allow a profound understanding for practical applications, such as targeted transport of molecules and substrates.
Published Surprising discovery shows electron beam radiation can repair nanostructures



In a surprising new study, researchers have found that the electron beam radiation that they previously thought degraded crystals can actually repair cracks in these nanostructures. The groundbreaking discovery provides a new pathway to create more perfect crystal nanostructures, a process that is critical to improving the efficiency and cost-effectiveness of materials that are used in virtually all electronic devices we use every day.
Published Widely tuneable terahertz lasers boost photo-induced superconductivity in K3C60



Researchers have long been exploring the effect of using tailored laser drives to manipulate the properties of quantum materials away from equilibrium. One of the most striking demonstrations of these physics has been in unconventional superconductors, where signatures of enhanced electronic coherences and super-transport have been documented in the resulting non-equilibrium states. However, these phenomena have not yet been systematically studied or optimized, primarily due to the complexity of the experiments. Technological applications are therefore still far removed from reality. In a recent experiment, this same group of researchers discovered a far more efficient way to create a previously observed metastable, superconducting-like state in K3C60 using laser light.
Published Scientists discover 'flipping' layers in heterostructures to cause changes in their properties



Transition metal dichalcogenide (TMD) semiconductors are special materials that have long fascinated researchers with their unique properties. For one, they are flat, one-atom-thick two-dimensional (2D) materials similar to that of graphene. They are compounds that contain different combinations of the transition metal group (e.g., molybdenum, tungsten) and chalcogen elements (e.g., sulfur, selenium, tellurium).
Published Bringing out the color in zinc



Researchers have synthesized a zinc complex based on two zinc centers that absorbs visible light. They demonstrated that this capability depends on the proximity of the zinc ions, where the complex responds to visible light when the zinc atoms are closer. This new property is expected to expand the utility of zinc, which already offers advantages including biological relevance, cost effectiveness, and low toxicity.