Showing 20 articles starting at article 521

< Previous 20 articles        Next 20 articles >

Categories: Anthropology: Cultures, Physics: General

Return to the site home page

Anthropology: Cultures Anthropology: General Archaeology: General Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Ancient Amazonians intentionally created fertile 'dark earth'      (via sciencedaily.com)     Original source 

A new study suggests patches of fertile soil in the Amazon, known as dark earth, were intentionally produced by ancient Amazonians as a way to improve the soil and sustain large and complex societies.

Anthropology: Cultures Anthropology: Early Humans Anthropology: General Archaeology: General Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Archaeologists discover world's oldest wooden structure      (via sciencedaily.com)     Original source 

Half a million years ago, earlier than was previously thought possible, humans were building structures made of wood, according to new research.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General
Published

Imaging the smallest atoms provides insights into an enzyme's unusual biochemistry      (via sciencedaily.com) 

A team has used neutron crystallography to image all of the atoms in a radical intermediate of a copper amine oxidase enzyme. They disclosed previously unknown details, such as precise conformational changes, that help to explain the enzyme's biochemistry. This work might help researchers engineer enzymes that facilitate unusual chemistry or are highly efficient at room temperature that are useful in chemical industry.

Chemistry: Thermodynamics Energy: Technology Physics: General Physics: Optics
Published

Electrons take flight at the nanoscale      (via sciencedaily.com) 

A study showing how electrons flow around sharp bends, such as those found in integrated circuits, has the potential to improve how these circuits, commonly used in electronic and optoelectronic devices, are designed.

Chemistry: Biochemistry Mathematics: General Mathematics: Modeling Physics: General
Published

Machine learning models can produce reliable results even with limited training data      (via sciencedaily.com) 

Researchers have determined how to build reliable machine learning models that can understand complex equations in real-world situations while using far less training data than is normally expected.

Chemistry: General Chemistry: Inorganic Chemistry Computer Science: General Energy: Technology Physics: General
Published

Engineers grow full wafers of high-performing 2D semiconductor that integrates with state-of-the-art chips      (via sciencedaily.com) 

Researchers have grown a high-performing 2D semiconductor to a full-size, industrial-scale wafer. In addition, the semiconductor material, indium selenide (InSe), can be deposited at temperatures low enough to integrate with a silicon chip.

Energy: Alternative Fuels Environmental: General Environmental: Water Physics: General Physics: Optics
Published

Step change in upconversion the key to clean water, green energy and futuristic medicine      (via sciencedaily.com) 

Achieving photochemical upconversion in a solid state is a step closer to reality, thanks to a new technique that could unlock vital innovations in renewable energy, water purification and advanced healthcare.

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

New clues to the nature of elusive dark matter      (via sciencedaily.com) 

A team of international researchers has uncovered further clues in the quest for insights into the nature of dark matter. The key to understanding this mystery could lie with the dark photon, a theoretical massive particle that may serve as a portal between the dark sector of particles and regular matter.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Space: Astrophysics Space: Cosmology Space: Exploration Space: General
Published

Carbon atoms coming together in space      (via sciencedaily.com)     Original source 

Lab-based studies reveal how carbon atoms diffuse on the surface of interstellar ice grains to form complex organic compounds, crucial to reveal the chemical complexity in the universe.

Anthropology: Cultures Archaeology: General Biology: Zoology
Published

How just one set of animal tracks can provide a wealth of information      (via sciencedaily.com)     Original source 

Rock faces in Namibia are decorated with hundreds of stone-age images not only of animals and human footprints, but also of animal tracks. These have been largely neglected to date as researchers lacked the knowledge required to interpret them. Archaeologists have now worked together with animal tracking experts to investigate the engraved animal tracks on six rock faces in more detail, and were able to determine detailed information on the species, age, sex, limbs, side of the body, trackway and relative direction of the tracks.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers detail how disorder alters quantum spin liquids, forming a new phase of matter      (via sciencedaily.com) 

Physicists begin to shed light on one of the most important questions regarding quantum spin liquids, and they do so by introducing a new phase of matter.

Physics: General Physics: Optics
Published

A new way to create germ-killing light      (via sciencedaily.com) 

A research team has created an aluminum-nitride device that can convert visible light into deep-ultraviolet light through the process of second harmonic generation. This work can lead to the development of practical devices that can sterilize surfaces with ultraviolet radiation while using less energy.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers make a significant step towards reliably processing quantum information      (via sciencedaily.com) 

Using laser light, researchers have developed the most robust method currently known to control individual qubits made of the chemical element barium. The ability to reliably control a qubit is an important achievement for realizing future functional quantum computers.

Physics: General Physics: Optics Physics: Quantum Computing
Published

Valleytronics: Innovative way to store and process information up to room temperature      (via sciencedaily.com) 

Researchers have found a way to maintain valley polarization at room temperature using novel materials and techniques.

Anthropology: Cultures Anthropology: General Archaeology: General Paleontology: Fossils
Published

St Helena's 'liberated' Africans came from West Central Africa between northern Angola and Gabon      (via sciencedaily.com)     Original source 

Between 1840 and 1867, thousands of enslaved Africans who had been 'liberated' from slave ships intercepted by the British Royal Navy were taken to the South Atlantic island of St Helena. But little is written in history books or otherwise known about the lives of these individuals. Now, ancient DNA analyses offer the first direct evidence for the origins of St Helena's liberated Africans.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning contributes to better quantum error correction      (via sciencedaily.com) 

Researchers have used machine learning to perform error correction for quantum computers -- a crucial step for making these devices practical -- using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Atomic-scale spin-optical laser: New horizon of optoelectronic devices      (via sciencedaily.com) 

Researchers have pushed the limits of the possible in the field of atomic-scale spin-optics, creating a spin-optical laser from monolayer-integrated spin-valley microcavities without requiring magnetic fields or cryogenic temperatures.

Chemistry: Inorganic Chemistry Physics: General
Published

Pioneering beyond-silicon technology via residue-free field effect transistors      (via sciencedaily.com) 

Beyond-silicon technology demands ultra-high-performance field-effect transistors (FETs). Transition metal dichalcogenides (TMDs) provide an ideal material platform, but the device performances such as contact resistance, on/off ratio, and mobility are often limited by the presence of interfacial residues caused by transfer procedures. We show an ideal residue-free transfer approach using polypropylene carbonate (PPC) with a negligible residue for monolayer MoS2. By incorporating bismuth semimetal contact with atomically clean monolayer MoS2-FET on h-BN substrate, we obtain an ultralow Ohmic contact resistance approaching the quantum limit and a record-high on/off ratio of ~1011 at 15 K. Such an ultraclean fabrication approach could be the ideal platform for high-performance electrical devices using large-area semiconducting TMDs.