Showing 20 articles starting at article 741
< Previous 20 articles Next 20 articles >
Categories: Anthropology: Cultures, Physics: General
Published Lasers and chemistry reveal how ancient pottery was made -- and how an empire functioned


Peru's first great empire, the Wari, stretched for more than a thousand miles over the Andes Mountains and along the coast from 600-1000 CE. The pottery they left behind gives archaeologists clues as to how the empire functioned. In a new study researchers showed that rather than using 'official' Wari pottery imported from the capital, potters across the empire were creating their own ceramics, decorated to emulate the traditional Wari style. To figure it out, the scientists analyzed the pottery's chemical make-up, with help from laser beams.
Published Magnetism fosters unusual electronic order in quantum material


Physicists have published an array of experimental evidence showing that the ordered magnetic arrangement of electrons in crystals of iron-germanium plays an integral role in bringing about an ordered electronic arrangement called a charge density wave that the team discovered in the material last year.
Published Scientists demonstrate time reflection of electromagnetic waves in a groundbreaking experiment



Scientists have hypothesized for over six decades the possibility of observing a form of wave reflections known as temporal, or time, reflections. Researchers detail a breakthrough experiment in which they were able to observe time reflections of electromagnetic signals in a tailored metamaterial.
Published 3D internal structure of rechargeable batteries revealed


Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.
Published Experiment unlocks bizarre properties of strange metals


Physicists are learning more about the bizarre behavior of 'strange metals,' which operate outside the normal rules of electricity.
Published Surprising similarities in stone tools of early humans and monkeys


Researchers have discovered artefacts produced by old world monkeys in Thailand that resemble stone tools, which historically have been identified as intentionally made by early hominins. Until now, sharp-edged stone tools were thought to represent the onset of intentional stone tool production, one of the defining and unique characteristics of hominin evolution. This new study challenges long held beliefs about the origins of intentional tool production in our own lineage.
Published Some stirring required: Fluid mixing enables scalable manufacturing of soft polymer structures


Researchers have developed and demonstrated an efficient and scalable technique that allows them to manufacture soft polymer materials in a dozen different structures, or 'morphologies,' from ribbons and nanoscale sheets to rods and branched particles. The technique allows users to finely tune the morphology of the materials at the micro- and nano-scale.
Published Ringing an electronic wave: Elusive massive phason observed in a charge density wave


Researchers have detected the existence of a charge density wave of electrons that acquires mass as it interacts with the background lattice ions of the material over long distances.
Published In the world's smallest ball game, scientists throw and catch single atoms using light


Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.
Published 3D battery imaging reveals the secret real-time life of lithium metal cells


Innovative battery researchers have cracked the code to creating real-time 3D images of the promising but temperamental lithium metal battery as it cycles. A team has succeeded in observing how the lithium metal in the cell behaves as it charges and discharges. The new method may contribute to batteries with higher capacity and increased safety in our future cars and devices.
Published Hitting nuclei with light may create fluid primordial matter


A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.
Published New kind of transistor could shrink communications devices on smartphones


One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team has now demonstrated a reconfigurable transistor using that material. Their work paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities.
Published A surprising way to trap a microparticle


New study finds obstacles can trap rolling microparticles in fluid. Through simulations and experiments, physicists attribute the trapping effect to stagnant pockets of fluid, created by hydrodynamics. Random motions of the molecules within the fluid then 'kick' the microroller into a stagnant pocket, effectively trapping it.
Published Researchers take a step towards turning interactions that normally ruin quantum information into a way of protecting it


A new method for predicting the behavior of quantum devices provides a crucial tool for real-world applications of quantum technology.
Published Viable superconducting material created, say researchers


Researchers report the creation of a superconducting material at both a temperature and pressure low enough for practical applications. In a new paper, the researchers describe a nitrogen-doped lutetium hydride that exhibits superconductivity at 69 degrees Fahrenheit and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.
Published The colors on these ancient pots hint at the power of an empire


Comparing the colors on pieces of ancient Peruvian pottery revealed that potters across the Wari empire all used the same rich black pigment: a sign of the empire's influence.
Published Graphene quantum dots show promise as novel magnetic field sensors


Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.
Published Two-dimensional quantum freeze


Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.
Published An innovative twist on quantum bits: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits


Scientists develop method for chemically modifying nanoscale tubes of carbon atoms, so they can host spinning electrons to serve as stable quantum bits in quantum technologies.
Published The world's first horse riders


Researchers have discovered evidence of horse riding by studying the remains of human skeletons found in burial mounds called kurgans, which were between 4500-5000 years old. The earthen burial mounds belonged to the Yamnaya culture. The Yamnayans had migrated from the Pontic-Caspian steppes to find greener pastures in today's countries of Romania and Bulgaria up to Hungary and Serbia.