Showing 20 articles starting at article 81

< Previous 20 articles        Next 20 articles >

Categories: Anthropology: Early Humans, Physics: General

Return to the site home page

Biology: Biochemistry Biology: General Biology: Marine Chemistry: Biochemistry Ecology: Sea Life Energy: Alternative Fuels Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Giant clams may hold the answers to making solar energy more efficient      (via sciencedaily.com)     Original source 

Solar panel and biorefinery designers could learn a thing or two from iridescent giant clams living near tropical coral reefs, according to a new study. This is because giant clams have precise geometries -- dynamic, vertical columns of photosynthetic receptors covered by a thin, light-scattering layer -- that may just make them the most efficient solar energy systems on Earth.

Chemistry: Inorganic Chemistry Energy: Nuclear Environmental: General Physics: General Physics: Optics
Published

Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature      (via sciencedaily.com)     Original source 

Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Computing Physics: Quantum Physics Space: General
Published

Neutrons on classically inexplicable paths      (via sciencedaily.com)     Original source 

Is nature really as strange as quantum theory says -- or are there simpler explanations? New neutron measurements prove: It doesn't work without the strange properties of quantum theory.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Visual explanations of machine learning models to estimate charge states in quantum dots      (via sciencedaily.com)     Original source 

To form qubit states in semiconductor materials, it requires tuning for numerous parameters. But as the number of qubits increases, the amount of parameters also increases, thereby complicating this process. Now, researchers have automated this process, overcoming a significant barrier to realizing quantum computers.

Chemistry: Thermodynamics Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Characterization of the extraordinary thermoelectric properties of cadmium arsenide thin films      (via sciencedaily.com)     Original source 

If there's one thing we humans are good at, it's producing heat. Significant amounts, and in many cases most of the energy we generate and put into our systems we lose as heat, whether it be our appliances, our transportation, our factories, even our electrical grid.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Understanding quantum states: New research shows importance of precise topography in solid neon qubits      (via sciencedaily.com)     Original source 

A new study shows new insight into the quantum state that describes the condition of electrons on an electron-on-solid-neon quantum bit, information that can help engineers build this innovative technology.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A chip-scale Titanium-sapphire laser      (via sciencedaily.com)     Original source 

With a single leap from tabletop to the microscale, engineers have produced the world's first practical Titanium-sapphire laser on a chip, democratizing a once-exclusive technology.

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Precision instrument bolsters efforts to find elusive dark energy      (via sciencedaily.com)     Original source 

Dark energy -- a mysterious force pushing the universe apart at an ever-increasing rate -- was discovered 26 years ago, and ever since, scientists have been searching for a new and exotic particle causing the expansion. Physicists combined an optical lattice with an atom interferometer to hold atoms in place for up to 70 seconds -- a record for an atom interferometer -- allowing them to more precisely test for deviations from the accepted theory of gravity that could be caused by dark energy particles such as chameleons or symmetrons. Though they detected no anomalies, they're improving the experiment to perform more sensitive tests of gravity, including whether gravity is quantized.

Anthropology: Cultures Anthropology: Early Humans Anthropology: General
Published

First case of Down syndrome in Neanderthals documented in new study      (via sciencedaily.com)     Original source 

A new study documents the first case of Down syndrome in Neanderthals and reveals that they were capable of providing altruistic care and support for a vulnerable member of their social group.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

A new study highlights potential of ultrafast laser processing for next-gen devices      (via sciencedaily.com)     Original source 

A new study uncovers the remarkable potential of ultrafast lasers that could provide innovative solutions in 2D materials processing for many technology developers such as high-speed photodetectors, flexible electronics, biohybrids, and next-generation solar cells.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Novel application of optical tweezers: Colorfully showing molecular energy transfer      (via sciencedaily.com)     Original source 

Using a novel non-contact approach, a research team has successfully controlled the speed and efficiency of Forster resonance energy transfer between fluorescent molecules by varying the intensity of a laser beam.

Chemistry: Biochemistry Physics: General Physics: Optics
Published

Controlling electronics with light: The magnetite breakthrough      (via sciencedaily.com)     Original source 

Researchers have discovered that by shining different wavelengths (colors) of light on a material called magnetite, they can change its state, e.g. making it more or less conducive to electricity. The discovery could lead to new ways of designing new materials for electronics such as memory storage, sensors, and other devices that rely on fast and efficient material responses.

Physics: General Physics: Quantum Physics
Published

New NOvA results add to mystery of neutrinos      (via sciencedaily.com)     Original source 

The international collaboration presented their first results with new data in four years, featuring a new low-energy sample of electron neutrinos and a dataset doubled in size.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough may clear major hurdle for quantum computers      (via sciencedaily.com)     Original source 

The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers.

Engineering: Nanotechnology Physics: General Physics: Optics
Published

Researchers film energy materials as they form      (via sciencedaily.com)     Original source 

Shooting a movie in the lab requires special equipment. Especially when the actors are molecules -- invisible to the naked eye -- reacting with each other. 'Imagine trying to film tiny lava flows during a volcanic eruption. Your smartphone camera wouldn't be up to the job.

Anthropology: Cultures Anthropology: Early Humans Anthropology: General
Published

Origins of cumulative culture in human evolution      (via sciencedaily.com)     Original source 

Cumulative culture -- the accumulation of technological modifications and improvements over generations -- allowed humans to adapt to a diversity of environments and challenges. But, it is unclear when cumulative culture first developed during hominin evolution. A new study concludes that humans began to rapidly accumulate technological knowledge through social learning around 600,000 years ago.

Chemistry: General Chemistry: Organic Chemistry Computer Science: Quantum Computers Energy: Alternative Fuels Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New material puts eco-friendly methanol conversion within reach      (via sciencedaily.com)     Original source 

Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.