Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Archaeology: General, Physics: General
Published Energy scientists unravel the mystery of gold's glow



EPFL researchers have developed the first comprehensive model of the quantum-mechanical effects behind photoluminescence in thin gold films; a discovery that could drive the development of solar fuels and batteries.
Published Atom-by-atom: Imaging structural transformations in 2D materials



Silicon-based electronics are approaching their physical limitations and new materials are needed to keep up with current technological demands. Two-dimensional (2D) materials have a rich array of properties, including superconductivity and magnetism, and are promising candidates for use in electronic systems, such as transistors. However, precisely controlling the properties of these materials is extraordinarily difficult.
Published First evidence of human occupation in lava tube cave in Saudi Arabia



New research has highlighted an area in Arabia that once acted as a key point for cultural exchanges and trades amongst ancient people -- and it all took place in vast caves and lava tubes that have remained largely untapped reservoirs of archaeological abundance in Arabia. Through meticulous excavation and analysis, the international team uncovered a wealth of evidence at Umm Jirsan, spanning from the Neolithic to the Chalcolithic/Bronze Age periods (~10,000-3,500 years ago).
Published Two-dimensional nanomaterial sets record for expert-defying, counter-intuitive expansion



Engineers have developed a record-setting nanomaterial which when stretched in one direction, expands perpendicular to the applied force.
Published Photonic computation with sound waves



Optical neural networks may provide the high-speed and large-capacity solution necessary to tackle challenging computing tasks. However, tapping their full potential will require further advances. One challenge is the reconfigurability of optical neural networks. A research team has now succeeded in laying the foundation for new reconfigurable neuromorphic building blocks by adding a new dimension to photonic machine learning: sound waves. The researchers use light to create temporary acoustic waves in an optical fiber. The sound waves generated in this way can for instance enable a recurrent functionality in a telecom optical fiber, which is essential to interpreting contextual information such as language.
Published Creating an island paradise in a fusion reactor



In their ongoing quest to develop a range of methods for managing plasma so it can be used to generate electricity in a process known as fusion, researchers have shown how two old methods can be combined to provide greater flexibility.
Published Crucial connection for 'quantum internet' made for the first time



Researchers have produced, stored, and retrieved quantum information for the first time, a critical step in quantum networking.
Published Quantum precision: A new kind of resistor



Researchers have developed a method that can improve the performance of quantum resistance standards. It's based on a quantum phenomenon called Quantum Anomalous Hall effect.
Published 'Surprising' hidden activity of semiconductor material spotted by researchers



New research suggests that materials commonly overlooked in computer chip design actually play an important role in information processing, a discovery which could lead to faster and more efficient electronics. Using advanced imaging techniques, an international team found that the material that a semiconductor chip device is built on, called the substrate, responds to changes in electricity much like the semiconductor on top of it.
Published With inspiration from 'Tetris,' researchers develop a better radiation detector



A new detector system based on the game 'Tetris' could enable inexpensive, accurate radiation detectors for monitoring nuclear sites.
Published Pacific cities much older than previously thought



New evidence of one of the first cities in the Pacific shows they were established much earlier than previously thought, according to new research. The study used aerial laser scanning to map archaeological sites on the island of Tongatapu in Tonga, showing Earth structures were being constructed in Tongatapu around AD 300.
Published The hidden role of the Milky Way in ancient Egyptian mythology



Astrophysicists shed light on the relationship between the Milky Way and the Egyptian sky-goddess Nut. The paper draws on ancient Egyptian texts and simulations to argue that the Milky Way might have shone a spotlight, as it were, on Nut's role as the sky. It proposes that in winter, the Milky Way highlighted Nut's outstretched arms, while in summer, it traced her backbone across the heavens.
Published Quantum breakthrough when light makes materials magnetic



The potential of quantum technology is huge but is today largely limited to the extremely cold environments of laboratories. Now, researchers have succeeded in demonstrating for the very first time how laser light can induce quantum behavior at room temperature -- and make non-magnetic materials magnetic. The breakthrough is expected to pave the way for faster and more energy-efficient computers, information transfer and data storage.
Published New method of measuring qubits promises ease of scalability in a microscopic package



The path to quantum supremacy is made challenging by the issues associated with scaling up the number of qubits. One key problem is the way that qubits are measured. A research group introduces a new approach that tackles these challenges head-on using nanobolometers instead of traditional, bulky parametric amplifiers.
Published New technique lets scientists create resistance-free electron channels



A team has taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state -- an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.
Published Early medieval money mystery solved



Byzantine bullion fueled Europe's revolutionary adoption of silver coins in the mid-7th century, only to be overtaken by silver from a mine in Charlemagne's Francia a century later, new tests reveal. The findings could transform our understanding of Europe's economic and political development.
Published Will the convergence of light and matter in Janus particles transcend performance limitations in the optical display industry?



Team successfully exerted electrical control over polaritons, hybridized light-matter particles, at room temperature.
Published Protecting art and passwords with biochemistry



A new molecular test method helps to prove the authenticity of works of art. The new method could also help to make passwords secure against quantum computers.
Published In the evolution of walking, the hip bone connected to the rib bones



A new reconstruction of the 375-million-year-old fossil fish Tiktaalik -- a close relative of limbed vertebrates -- used micro-CT to reveal bones still embedded in matrix. The reconstruction shows that the fish's ribs likely attached to its pelvis, an innovation thought to be crucial to supporting the body and for the eventual evolution of walking.
Published Chemical reactions can scramble quantum information as well as black holes



A team of researchers has shown that molecules can be as formidable at scrambling quantum information as black holes by combining mathematical tools from black hole physics and chemical physics and testing their theory in chemical reactions.