Showing 20 articles starting at article 801
< Previous 20 articles Next 20 articles >
Categories: Archaeology: General, Physics: General
Published Semiconductor lattice marries electrons and magnetic moments


A model system created by stacking a pair of monolayer semiconductors is giving physicists a simpler way to study confounding quantum behavior, from heavy fermions to exotic quantum phase transitions.
Published New microchip links two Nobel Prize-winning techniques


Physicists have built a new technology on a microchip by combining two Nobel Prize-winning techniques. This microchip could measure distances in materials at high precision, for example underwater or for medical imaging. Because the technology uses sound vibrations instead of light, it is useful for high-precision position measurements in opaque materials. There's no need for complex feedback loops or for tuning certain parameters to get it to operate properly. This makes it a very simple and low-power technology, that is much easier to miniaturize on a microchip. What makes it special is that it doesn't need any precision hardware and is therefore easy to produce. It only requires inserting a laser, and nothing else. The instrument could lead to new techniques to monitor the Earth's climate and human health.
Published New simulation reveals secrets of exotic form of electrons called polarons


Conditions mapped for the first time of polaron characteristics in 2D materials. TACC's Frontera supercomputer generated quantum mechanical calculations on hexagonal boron nitride system of 30,000 atoms.
Published Neutrinos made by a particle collider detected


Physicists have detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, which were first spotted in 1956 and play a key role in the process that makes stars burn.
Published Visualization of electron dynamics on liquid helium


An international team has discovered how electrons can slither rapidly to-and-fro across a quantum surface when driven by external forces. The research has enabled the visualization of the motion of electrons on liquid helium.
Published Imaging the proton with neutrinos


The interactions of the quarks and gluons that make up protons and neutrons are so strong that the structure of protons and neutrons is difficult to calculate from theory and must be instead measured experimentally. Neutrino experiments use targets that are nuclei made of many protons and neutrons bound together. This complicates interpreting those measurements to infer proton structure. By scattering neutrinos from the protons that are the nuclei of hydrogen atoms in the MINERvA detector, scientists have provided the first measurements of this structure with neutrinos using unbound protons.
Published 'Y-ball' compound yields quantum secrets


Scientists investigating a compound called 'Y-ball' -- which belongs to a mysterious class of 'strange metals' viewed as centrally important to next-generation quantum materials -- have found new ways to probe and understand its behavior.
Published Surprise in the quantum world: Disorder leads to ferromagnetic topological insulator


Magnetic topological insulators are an exotic class of materials that conduct electrons without any resistance at all and so are regarded as a promising breakthrough in materials science. Researchers have achieved a significant milestone in the pursuit of energy-efficient quantum technologies by designing the ferromagnetic topological insulator MnBi6Te10 from the manganese bismuth telluride family. The amazing thing about this quantum material is that its ferromagnetic properties only occur when some atoms swap places, introducing antisite disorder.
Published Scientists find a common thread linking subatomic color glass condensate and massive black holes


Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.
Published New possibilities in the theoretical prediction of particle interactions


A team of scientists finds a way to evaluate highly complex Feynman integrals.
Published Ultrafast beam-steering breakthrough


n a major breakthrough in the fields of nanophotonics and ultrafast optics, a research team has demonstrated the ability to dynamically steer light pulses from conventional, so-called incoherent light sources.
Published First detection of neutrinos made at a particle collider


A team including physicists has for the first time detected subatomic particles called neutrinos created by a particle collider, namely at CERN's Large Hadron Collider (LHC). The discovery promises to deepen scientists' understanding of the nature of neutrinos, which are among the most abundant particles in the universe and key to the solution of the question why there is more matter than antimatter.
Published Genome research: Origin and evolution of vine


Cultivation and growth of grapevines have strongly influenced European civilizations, but where the grapevine comes from and how it has spread across the globe has been highly disputed so far. In an extensive genome project, researchers have determined its origin and evolution from the wild vine to today's cultivar by analyzing thousands of vine genomes collected along the Silk Road from China to Western Europe.
Published Scientists open door to manipulating 'quantum light'


How light interacts with matter has always fired the imagination. Now scientists for the first time have demonstrated the ability to manipulate single and double atoms exhibiting the properties of simulated light emission. This creates prospects for advances in photonic quantum computing and low-intensity medical imaging.
Published Instrument adapted from astronomy observation helps capture singular quantum interference effects


By adapting technology used for gamma-ray astronomy, researchers has found X-ray transitions previously thought to have been unpolarized according to atomic physics, are in fact highly polarized.
Published Superconducting amplifiers offer high performance with lower power consumption


Researchers have devised a new concept of superconducting microwave low-noise amplifiers for use in radio wave detectors for radio astronomy observations, and successfully demonstrated a high-performance cooled amplifier with power consumption three orders of magnitude lower than that of conventional cooled semiconductor amplifiers. This result is expected to contribute to the realization of large-scale multi-element radio cameras and error-tolerant quantum computers, both of which require a large number of low-noise microwave amplifiers.
Published Sculpting quantum materials for the electronics of the future


The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials -- whose exceptional properties stem from quantum physics -- is the most promising way to meet these challenges. An international team has designed a material in which the dynamics of electrons can be controlled by curving the fabric of space in which they evolve. These properties are of interest for next-generation electronic devices, including the optoelectronics of the future.
Published Qubits put new spin on magnetism: Boosting applications of quantum computers


Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.
Published Displays with more brilliant colors through a fundamental physical concept


New research has shown that a strong coupling of light and material increases the colour brilliance of OLED displays. This increase is independent of the viewing angle and does not affect energy efficiency.
Published Breakthrough in the understanding of quantum turbulence


Researchers have shown how energy disappears in quantum turbulence, paving the way for a better understanding of turbulence in scales ranging from the microscopic to the planetary. The team's findings demonstrate a new understanding of how wave-like motion transfers energy from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales. In the future, an improved understanding of turbulence beginning on the quantum level could allow for improved engineering in domains where the flow and behavior of fluids and gases like water and air is a key question. Understanding that in classical fluids will help scientists do things like improve the aerodynamics of vehicles, predict the weather with better accuracy, or control water flow in pipes. There is a huge number of potential real-world uses for understanding macroscopic turbulence.