Showing 20 articles starting at article 241
< Previous 20 articles Next 20 articles >
Categories: Paleontology: Dinosaurs, Physics: General
Published Scientists reveal the first unconventional superconductor that can be found in mineral form in nature



Scientists have identified the first unconventional superconductor with a chemical composition also found in nature.
Published Alaska dinosaur tracks reveal a lush, wet environment



A large find of dinosaur tracks and fossilized plants and tree stumps in far northwestern Alaska provides new information about the climate and movement of animals near the time when they began traveling between the Asian and North American continents roughly 100 million years ago.
Published Spiral wrappers switch nanotubes from conductors to semiconductors and back



By wrapping a carbon nanotube with a ribbon-like polymer, researchers were able to create nanotubes that conduct electricity when struck with low-energy light that our eyes cannot see. In the future, the approach could make it possible to optimize semiconductors for applications ranging from night vision to new forms of computing.
Published Higher carnivorous dinosaur biodiversity of famous Kem Kem beds, Morocco



An international team of palaeontologists applied recently developed methods to measure theropod (carnivorous) dinosaur species diversity. The newly applied method uses both traditional phylogenetic analysis, discriminant analysis as well as machine learning.
Published Powerful new tool ushers in new era of quantum materials research



Research in quantum materials is paving the way for groundbreaking discoveries and is poised to drive technological advancements that will redefine the landscapes of industries like mining, energy, transportation, and medtech. A technique called time- and angle-resolved photoemission spectroscopy (TR-ARPES) has emerged as a powerful tool, allowing researchers to explore the equilibrium and dynamical properties of quantum materials via light-matter interaction.
Published Giving particle detectors a boost



Researchers have tested the performance of a new device that boosts particle signals.
Published Design rules and synthesis of quantum memory candidates



In the quest to develop quantum computers and networks, there are many components that are fundamentally different than those used today. Like a modern computer, each of these components has different constraints. However, it is currently unclear what materials can be used to construct those components for the transmission and storage of quantum information.
Published Preventing magnet meltdowns before they can start



High-temperature superconductor magnets have the potential to lower the costs of operating particle accelerators and enable powerful new technologies like fusion reactors. But quenches -- the sudden, destructive events wherein a part of the material loses superconductivity -- are a major barrier to their deployment. Scientists have developed an approach to prevent quenches altogether, rather than simply trying to manage them after they occur.
Published Combined microscopy technique catches light-driven polymers in the act



Researchers have used tip-scan high-speed atomic force microscopy combined with an optical microscope to observe light-induced deformation of azo-polymer films. The process could be followed in real time, and the film patterns were found to change with the polarization of the light source. The observations will contribute to the use of azo-polymers in applications such as optical data storage, and the approach is expected to be useful across materials science and physical chemistry.
Published Pushing the boundary on ultralow frequency gravitational waves



A team of physicists has developed a method to detect gravity waves with such low frequencies that they could unlock the secrets behind the early phases of mergers between supermassive black holes, the heaviest objects in the universe.
Published Researchers develop new machine learning method for modeling of chemical reactions



Researchers have used machine learning to create a model that simulates reactive processes in organic materials and conditions.
Published Making quantum bits fly



Physicists are developing a method that could enable the stable exchange of information in quantum computers. In the leading role: photons that make quantum bits 'fly'.
Published Using light to precisely control single-molecule devices



Researchers flip the switch at the nanoscale by applying light to induce bonding for single-molecule device switching.
Published New method measures the 3D position of individual atoms



Since more than a decade it has been possible for physicists to accurately measure the location of individual atoms to a precision of smaller than one thousandth of a millimeter using a special type of microscope. However, this method has so far only provided the x and y coordinates. Information on the vertical position of the atom -- i.e., the distance between the atom and the microscope objective -- is lacking. A new method has now been developed that can determine all three spatial coordinates of an atom with one single image.
Published Shortcut to Success: Toward fast and robust quantum control through accelerating adiabatic passage



Researchers achieved the acceleration of adiabatic evolution of a single spin qubit in gate-defined quantum dots. After the pulse optimization to suppress quasistatic noises, the spin flip fidelity can be as high as 97.5% in GaAs quantum dots. This work may be useful to achieve fast and high-fidelity quantum computing.
Published Fossils of giant sea lizard with dagger-like teeth show how our oceans have fundamentally changed since the dinosaur era



Fossils of a strange new species of marine lizard with dagger-like teeth that lived 66 million years ago, show a dramatically more biodiverse ocean ecosystem to what we see today.
Published One way to improve a fusion reaction: Use weaknesses as strengths



Scientists are embracing imperfection, using less-than-ideal magnetic fields to make the plasma more manageable.
Published Fossil named 'Attenborough's strange bird' was the first in its kind without teeth



A new fossil, named 'Attenborough's strange bird' after naturalist and documentarian Sir David Attenborough, is the first of its kind to evolve a toothless beak. It's from a branch of the bird family tree that went extinct in the mass extinction 66 million years ago, and this strange bird is another puzzle piece that helps explain why some birds -- and their fellow dinosaurs -- went extinct, and others survived to today.
Published Spontaneous curvature the key to shape-shifting nanomaterials



Inspired by nature, nanotechnology researchers have identified 'spontaneous curvature' as the key factor determining how ultra-thin, artificial materials can transform into useful tubes, twists and helices.
Published Network of quantum sensors boosts precision



Quantum sensor technology promises even more precise measurements of physical quantities. A team has now compared the signals of up to 91 quantum sensors with each other and thus successfully eliminated the noise caused by interactions with the environment. Correlation spectroscopy can be used to increase the precision of sensor networks.