Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Paleontology: Dinosaurs, Physics: General
Published Scientists closer to solving mysteries of universe after measuring gravity in quantum world



Scientists are closer to unravelling the mysterious forces of the universe after working out how to measure gravity on a microscopic level. Experts have never fully understood how the force works in the tiny quantum world -- but now physicists have successfully detected a weak gravitational pull on a tiny particle using a new technique.
Published Measuring the properties of light: Scientists realize new method for determining quantum states



Scientists have used a new method to determine the characteristics of optical, i.e. light-based, quantum states. For the first time, they are using certain photon detectors -- devices that can detect individual light particles -- for so-called homodyne detection. The ability to characterize optical quantum states makes the method an essential tool for quantum information processing.
Published Photon upconversion: Steering light with supercritical coupling



Researchers have unveiled a novel concept termed 'supercritical coupling' that enables several folds increase in photon upconversion efficiency. This discovery not only challenges existing paradigms, but also opens a new direction in the control of light emission.
Published Graphene research: Numerous products, no acute dangers found by study



Graphene is an enormously promising material. It consists of a single layer of carbon atoms arranged in a honeycomb pattern and has extraordinary properties: exceptional mechanical strength, flexibility, transparency and outstanding thermal and electrical conductivity. If the already two-dimensional material is spatially restricted even more, for example into a narrow ribbon, controllable quantum effects can be created. This could enable a wide range of applications, from vehicle construction and energy storage to quantum computing.
Published Physicists discover a quantum state with a new type of emergent particles: Six-flux composite fermions



Physicists have reported a new fractional quantum Hall state that is very different from all other known fractional states and will invoke the existence of a new type of emergent particle, which they are calling six-flux composite fermions.
Published Revolutionary breakthrough in solar energy: Most efficient QD solar cells



A research team has unveiled a novel ligand exchange technique that enables the synthesis of organic cation-based perovskite quantum dots (PQDs), ensuring exceptional stability while suppressing internal defects in the photoactive layer of solar cells.
Published Electrons become fractions of themselves in graphene



Physicists have observed fractional quantum Hall effect in simple pentalayer graphene. The finding could make it easier to develop more robust quantum computers.
Published Engineers use AI to wrangle fusion power for the grid



A team composed of engineers, physicists, and data scientists have harnessed the power of artificial intelligence to predict -- and then avoid -- the formation of a specific plasma problem in real time. The research opens the door for more dynamic control of a fusion reaction than current approaches and provides a foundation for using artificial intelligence to solve a broad range of plasma instabilities, which have long been obstacles to achieving a sustained fusion reaction.
Published Plasma scientists develop computer programs that could reduce the cost of microchips and stimulate American manufacturing



Fashioned from the same element found in sand and covered by intricate patterns, microchips power smartphones, augment appliances and aid the operation of cars and airplanes. Now, scientists are developing computer simulation codes that will outperform current simulation techniques and aid the production of microchips using plasma, the electrically charged state of matter also used in fusion research. These codes could help increase the efficiency of the manufacturing process and potentially stimulate the renaissance of the chip industry in the United States.
Published Engineers achieve breakthrough in quantum sensing



A collaborative project has made a breakthrough in enhancing the speed and resolution of wide-field quantum sensing, leading to new opportunities in scientific research and practical applications.
Published Accelerating the discovery of single-molecule magnets with deep learning



Single-molecule magnets (SMMs) are exciting materials. In a recent breakthrough, researchers have used deep learning to predict SMMs from 20,000 metal complexes. The predictions were made solely based on the crystal structures of these metal complexes, thus eliminating the need for time-consuming experiments and complex simulations. As a result, this method is expected to accelerate the development of functional materials, especially for high-density memory and quantum computing devices.
Published New nuclei can help shape our understanding of fundamental science on Earth and in the cosmos



In creating five new isotopes, scientists have brought the stars closer to Earth. The isotopes are known as thulium-182, thulium-183, ytterbium-186, ytterbium-187 and lutetium-190.
Published First-ever atomic freeze-frame of liquid water



Scientists report the first look at electrons moving in real-time in liquid water; the findings open up a whole new field of experimental physics.
Published A star like a Matryoshka doll: New theory for gravastars



If gravitational condensate stars (or gravastars) actually existed, they would look similar to black holes to a distant observer. Two theoretical physicists have now found a new solution to Albert Einstein's theory of general relativity, according to which gravitational stars could be structured like a Russian matryoshka doll, with one gravastar located inside another.
Published A lighthouse in the Gobi desert



A new study explores the weight great fossil sites have on our understanding of evolutionary relationships between fossil groups and quantified the power these sites have on our understanding of evolutionary history. Surprisingly, the authors discovered that the wind-swept sand deposits of the Late Cretaceous Gobi Desert's extraordinarily diverse and well-preserved fossil lizard record shapes our understanding of their evolutionary history more than any other site on the planet.
Published Fundamental equation for superconducting quantum bits revised



Physicists have uncovered that Josephson tunnel junctions -- the fundamental building blocks of superconducting quantum computers -- are more complex than previously thought. Just like overtones in a musical instrument, harmonics are superimposed on the fundamental mode. As a consequence, corrections may lead to quantum bits that are 2 to 7 times more stable. The researchers support their findings with experimental evidence from multiple laboratories across the globe.
Published Altermagnetism proves its place on the magnetic family tree



There is now a new addition to the magnetic family: researchers have demonstrated the existence of altermagnetism. The experimental discovery of this new branch of magnetism signifies new fundamental physics, with major implications for spintronics.
Published A 'quantum leap' at room temperature



Scientists have achieved a milestone by controlling quantum phenomena at room temperature.
Published Astronomy observation instrument used to uncover internal structure of atomic nuclei



Researchers have used equipment originally intended for astronomy observation to capture transformations in the nuclear structure of atomic nuclei, reports a new study.
Published Greetings from the island of enhanced stability: The quest for the limit of the periodic table



Since the turn of the century, six new chemical elements have been discovered and subsequently added to the periodic table of elements, the very icon of chemistry. These new elements have high atomic numbers up to 118 and are significantly heavier than uranium, the element with the highest atomic number (92) found in larger quantities on Earth. This raises questions such as how many more of these superheavy species are waiting to be discovered, where -- if at all -- is a fundamental limit in the creation of these elements, and what are the characteristics of the so-called island of enhanced stability. In a recent review, experts in theoretical and experimental chemistry and physics of the heaviest elements and their nuclei summarize the major challenges and offer a fresh view on new superheavy elements and the limit of the periodic table.