Showing 20 articles starting at article 341

< Previous 20 articles        Next 20 articles >

Categories: Paleontology: Dinosaurs, Physics: General

Return to the site home page

Biology: Zoology Ecology: Trees Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

Student discovers 200-million-year-old flying reptile      (via sciencedaily.com)     Original source 

Gliding winged-reptiles were amongst the ancient crocodile residents of the Mendip Hills in Somerset, England, researchers at the have revealed.

Chemistry: Biochemistry Computer Science: General Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General
Published

DNA origami folded into tiny motor      (via sciencedaily.com)     Original source 

Scientists have created a working nanoscale electomotor. The science team designed a turbine engineered from DNA that is powered by hydrodynamic flow inside a nanopore, a nanometer-sized hole in a membrane of solid-state silicon nitride. The tiny motor could help spark research into future applications such as building molecular factories or even medical probes of molecules inside the bloodstream.

Computer Science: Quantum Computers Physics: Acoustics and Ultrasound Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Towards the quantum of sound      (via sciencedaily.com)     Original source 

A team of scientists has succeeded in cooling traveling sound waves in wave-guides considerably further than has previously been possible using laser light. This achievement represents a significant move towards the ultimate goal of reaching the quantum ground state of sound in wave-guides. Unwanted noise generated by the acoustic waves at room temperature can be eliminated. This experimental approach both provides a deeper understanding of the transition from classical to quantum phenomena of sound and is relevant to quantum communication systems and future quantum technologies.

Chemistry: General Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Lighting the path: Exploring exciton binding energies in organic semiconductors      (via sciencedaily.com)     Original source 

Organic semiconductors are materials that find applications in various electronic devices. Exciton binding energy is an important attribute that influences the behavior of these materials. Now, researchers have employed advanced spectroscopic techniques to accurately determine these energies for various organic semiconductor materials, with a high precision of 0.1 electron volts. Their study reveals unexpected correlations that are poised to shape the future of organic optoelectronics, influence design principles, and find potential applications in bio-related materials.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

Unlocking the secrets of quasicrystal magnetism: Revealing a novel magnetic phase diagram      (via sciencedaily.com)     Original source 

Non-Heisenberg-type approximant crystals have many interesting properties and are intriguing for researchers of condensed matter physics. However, their magnetic phase diagrams, which are crucial for realizing their potential, remain completely unknown. Now, a team of researchers has constructed the magnetic phase diagram of a non-Heisenberg Tsai-type 1/1 gold-gallium-terbium approximant crystal. This development marks a significant step forward for quasicrystal research and for the realization of magnetic refrigerators and spintronic devices.

Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Chemists create a 2D heavy fermion      (via sciencedaily.com)     Original source 

Researchers have synthesized the first 2D heavy fermion. The material, a layered intermetallic crystal composed of cerium, silicon, and iodine (CeSiI), has electrons that are 1000x heavier and is a new platform to explore quantum phenomena.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Higher measurement accuracy opens new window to the quantum world      (via sciencedaily.com)     Original source 

A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).

Computer Science: General Physics: General Physics: Optics
Published

Ultrafast laser pulses could lessen data storage energy needs      (via sciencedaily.com)     Original source 

A discovery from an experiment with magnetic materials and ultrafast lasers could be a boon to energy-efficient data storage.

Energy: Fossil Fuels Energy: Nuclear Energy: Technology Environmental: General Physics: General
Published

A non-proliferation solution: Using antineutrinos to surveil nuclear reactors      (via sciencedaily.com)     Original source 

Antineutrinos generated in nuclear fission can be measured to remotely monitor the operation of nuclear reactors and verify that they are not being used to produce nuclear weapons, report scientists. Thanks to a newly developed method, it is now possible to estimate a reactor's operation status, fuel burnup, and fuel composition based entirely on its antineutrino emissions. This technique could contribute massively to nuclear non-proliferation efforts and, in turn, safer nuclear energy.

Chemistry: Biochemistry Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Long live the graphene valley state      (via sciencedaily.com)     Original source 

Researchers found evidence that bilayer graphene quantum dots may host a promising new type of quantum bit based on so-called valley states.

Physics: General
Published

The surface knows what lies beneath: Physicists show how to detect higher-order topological insulators      (via sciencedaily.com)     Original source 

Just like a book can't be judged by its cover, a material can't always be judged by its surface. But, for an elusive conjectured class of materials, physicists have now shown that the surface previously thought to be 'featureless' holds an unmistakable signature that could lead to the first definitive observation.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists identify overlooked uncertainty in real-world experiments      (via sciencedaily.com)     Original source 

The rules of statistical physics address the uncertainty about the state of a system that arises when that system interacts with its environment. But they've long missed another kind. In a new paper, researchers argue that uncertainty in the thermodynamic parameters themselves -- built into equations that govern the energetic behavior of the system -- may also influence the outcome of an experiment.

Chemistry: Biochemistry Computer Science: Quantum Computers Energy: Nuclear Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Solid-state qubits: Forget about being clean, embrace mess      (via sciencedaily.com)     Original source 

New findings debunk previous wisdom that solid-state qubits need to be super dilute in an ultra-clean material to achieve long lifetimes. Instead, cram lots of rare-earth ions into a crystal and some will form pairs that act as highly coherent qubits, a new paper shows.

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

Bridging light and electrons      (via sciencedaily.com)     Original source 

Researchers have merged nonlinear optics with electron microscopy, unlocking new capabilities in material studies and the control of electron beams.

Chemistry: General Chemistry: Inorganic Chemistry Physics: Acoustics and Ultrasound Physics: General
Published

Molecularly designing polymer networks to control sound damping      (via sciencedaily.com)     Original source 

The world is filled with a myriad of sounds and vibrations -- the gentle tones of a piano drifting down the hall, the relaxing purr of a cat laying on your chest, the annoying hum of the office lights. Imagine being able to selectively tune out noises of a certain frequency. Researchers have now synthesized polymer networks with two distinct architectures and crosslink points capable of dynamically exchanging polymer strands to understand how the network connectivity and bond exchange mechanisms govern the overall damping behavior of the network. The incorporation of dynamic bonds into the polymer network demonstrates excellent damping of sound and vibrations at well-defined frequencies.

Computer Science: General Physics: General
Published

Revolutionizing real-time data processing with edge computing and reservoir technology      (via sciencedaily.com)     Original source 

Traditional cloud computing faces various challenges when processing large amounts of data in real time. 'Edge' computing is a promising alternative and can benefit from devices known as physical reservoirs. Researchers have now developed a novel memristor device for this purpose. It responds to electrical and optical signals and overcomes real-time processing limitations. When tested, it achieved up to 90.2% accuracy in digit identification, demonstrating its potential for applications in artificial intelligence systems and beyond.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Generating stable qubits at room temperature      (via sciencedaily.com)     Original source 

Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First direct imaging of small noble gas clusters at room temperature      (via sciencedaily.com)     Original source 

Scientists have succeeded in the stabilization and direct imaging of small clusters of noble gas atoms at room temperature. This achievement opens up exciting possibilities for fundamental research in condensed matter physics and applications in quantum information technology. The key to this breakthrough was the confinement of noble gas atoms between two layers of graphene.